### **Installation & Preparation for Sentry I Chlorinator**

Better Water Industries, Inc., recommends that you have the proper tools handy that are necessary to install the Sentry I. Tools included are:

| Flashlight              | 9/16" Wrench           |
|-------------------------|------------------------|
| 10' 3/4" CPVC           | Hacksaw                |
| 1 3/8" Hole Saw         | Pliers                 |
| 5/16" Nut Driver        | <sup>1</sup> /2" Drill |
| Electrical Tape         | Hose Clamp             |
| Mirror                  | Rubber Hammer          |
| Tape Measure            | Screwdriver            |
| Channel Locks           | 2 Wire Nuts            |
| <sup>1</sup> /2" Wrench | 7/8" Hole Saw          |
| **Wire Vent Kit**       |                        |
| (Sold Separately)       |                        |
|                         |                        |



Before installing your Sentry I, BWI, Inc. Recommends that you work closely with your State agency as approval may be necessary.

### **Preparing the Well**

The following should be used when either preparing the well for installation or preparing the well in the event that the SENTRY I hasn't been in use for more than 30 days.

When you remove the sanitary seal well cap use a mirror or flashlight and see what kind of pit less adapter there is in the well. Slide the tapered end of the drop tube past the pit less adapter before dropping any pellets. Be careful so the drop tube doesn't slip or fall down the well. Drop 15-25 chlorine pellets down the <sup>3</sup>/<sub>4</sub>" **x 10' CPVC** drop tube to help satisfy the initial chlorine demand of the well. When dropping pellets ensure you hear the sounds of "PLUNK" this will ensure that the pellets have a clear passage to the water.



**NOTE:** Predrilled, tapered-end drop tubes are used to promote moisture release, prevent pellet clogging and help with the installation past the pit less adapter.

Taper the drop tubes by using a hacksaw and cutting one end of the tube in a "V" shape about  $1 - \frac{1}{2}$  long. Next, drill  $\frac{1}{4}$ " holes in the bottom 2/3rds of the tube approximately 4" apart making sure there are no plastic shavings on the inside which might stop the pellet from dropping through. Drill all the way through the tubes so each drilling motion creates two holes. Most dealers' inventory pre-drilled and pre-cut tubes to save installation time.

**Note:** High static water levels (20' or less) require a drop tube without any holes drilled in it. In this application the drop tube should be submerged one (1ft) in the water.

### Wire & Vent Kit Installation

Type 1: Standard Wire & Vent Kit Part# M 120005



There are two ways to do this. You can either drill three holes (one for the drop tube, one for the electrical connection, and one for the vent) or drill one hole and use BWI's Wire and Vent Kit.

BWI recommends using the Wire and Vent Kit and drilling a single hole. We recommend this because it is important to have adequate venting with each installation. This speeds up the installation time and gives the installation a professional look.

Remove the well cap when drilling and place it on the ground and drill straight down into the cap with a 1-3/8" hole saw. This hole should line up with the hole in the pitless adapter so that the chlorine tablets will have a straight drop to the water in the well.

Drill straight down, slightly off the middle of the cap. You will get a "feel" as to where to drill the hole as you install more Sentry I's. Make sure that the hole is drilled straight and not at an angle -- as this will help with the alignment of the Wire and Vent Kit and Drop Tube.

For your first few installations, you may want to line up the hole by attaching the bracket before you start to drill. Install the Sentry I from the well casing up to the

Sentry I system. After a few installations you will know by the sight as to where the single hole should be drilled.

### Type 2: Vermin – Proof Part# M 120019

When installing the Sentry I with the pre-drilled, vermin-proof, water-tight cap with the 1-1/4" threaded hole, use the Sentry I Wire and Vent Kit.

We recommend this because it is important to have adequate venting with each installation. A minimum additional vent surface area of .75 square inches is provided with the Sentry I Wire and Venting Kit itself. This must be used in the installation.

In all cases the well cap being used must be an approved sanitary seal or an approved vermin-proof, water-tight cap. In many applications this cap is necessary and can be ordered from BWI.



### Attaching the Bracket

Place the two casing adapters around the well casing. You will notice that the casing adapters are sized to fit perfectly around a 4" well casing. For larger size casings use your rubber hammer to "shape" the casing adapter to the arc of that particular well casing.

Included with the Sentry I are two 18" pieces of 2000# tensile strength strapping. Measure the strapping between the eyelets of the casing adapter once you have fitted the casing adapter around the well casing. Add 2 inches to the length between the eyelets and cut off the excess strapping. Bend the strapping with pliers one inch from each end of the strapping. Place the strapping in each eyelet with the 1" bend facing the well casing (on the inside) and tighten snug the bolts on the casing adapter.

You will be able to put the standpipe in the casing adapter and be able to "swing" the entire adapter assembly around the well if necessary. (It is important to line up the drop tube straight down through the well casing as it extends from the bottom plate. Final tightening shouldn't be done until the bottom plate is attached).

### Lining up the Drop Tube

Place the Sentry I bottom plate on the standpipe and turn the bracket so that the drop tube extends through the hole in the "T" of BWI's Wire and Vent Kit and into the hole on the underside of the bottom plate. It is important to have a straight drop into the well.

Make sure the Sentry I bottom plate is pushed all the way on the standpipe. Once it is on the standpipe, tighten the hose clamp over the fitting that covers the standpipe with a 5/16" nut driver.

Bolt the 3" bolts into the casing adapter on the inside--tightening the casing adapter around the well casing. Snug the bolts up good and tight. You should NOT be able to move the casing adapter at this point.

### Wiring of your Sentry I

Better Water Industries, Inc. recommends that a **LICENSED ELECTRICIAN** make the electrical connections. The Sentry I is available in both 115V and 230V to match the voltage of the pump.

When arriving at the job site make sure that you have the right voltage Sentry I with you. Motors are interchangeable between the 115V and 230V and can be ordered separately from BWI. In most instances, a Sentry I system can be installed in less than an hour....providing you have the proper tools.

Note: As a preventive measure against moisture, seal conduit with caulk.

# IMPORTANT

### MAKE SURE THE ELECTRICITY IS OFF TO THE PUMP BEFORE STARTING YOUR INSTAL-LATION!

### **The Electrical Connection**

Remove the motor cover on the bottom of the bottom plate for access to the wires. Connect the wires from the BWI *Wire and Vent Kit* to the wires on the motor with the wire nuts and ensure a good connection. Put the conduit fitting in the hole of the motor cover and tighten. Pull the wires out of the well and tie in the wires from BWI's Wire and Vent Kit to the wires on the pump. (Generally, you will find red, black, and yellow wires. Red is normally the starter wire that is tied into the capacitor. Usually you will use the black and yellow wires for a 230V application. Variable Frequency Drives (VFD) application must follow additional installation instructions listed below.)

Connect the well pump wires to the conduit wires on the Sentry I. Again, make sure the connection is secure. Place the wires back in the well casing. Replace the well cap. Make sure the switch is in the "on" position and run water until the pumps runs. The motor gear should turn.

Be sure the drop tube is securely inserted in the drop tube hole on the bottom plate. You may want to drop another chlorine pellet to make sure the pellet is reaching the water.

Applications that use VFD's (constant pressure pumps) **must** trigger the Sentry I with a current switch (part # M 120150). This application **requires** the use of a 115 VAC/60 Hz Sentry I and clean power source with the adjustable current switch clamped around one wire that drives the well pump. After wiring the Sentry I, flow water at a typical usage rate and adjust the current switch to activate or close the switch.

Applications that continuously operate the Sentry I for more than one hour need to install a recycling timer and should install the commercial motor plate. BWI also has an "Accu-Dose" timer for applications where external dose adjustment is desired. (See page DM - 9 & DM - 10)



### Setting the Sentry I

- As a rule of thumb, just one chlorine pellet (1 gram) will normally treat 30 gallons of water. This "30 gallon figure" is based on "trial and error" field testing over a five year period and is by no means absolute. Each application can vary and the rule of thumb may not apply.
- For a more accurate setting one can figure out the chlorine demand of the water.

#### **Chlorine Demand Calculations**

To figure out how many gallons are treated for your specific application you need to know these specifics: 0.6 ppm of chlorine is needed to treat 1 ppm of Iron

3.0 ppm of chlorine is needed to treat 1 ppm of Sulphur

1.2 ppm of chlorine is needed to treat 1 ppm of Manganese

1-3 ppm of chlorine is needed to treat 1 ppm of Alga Bacteria

Example: **NOT** all water corresponds to the thirty (30) gallon/per/pellet figure. Below is an example.

| 4ppm iron                    | 4x0.6  | = 2.4ppm chlorine demand                             |
|------------------------------|--------|------------------------------------------------------|
| 2ppm sulphur                 | 2x3    | = 6.0ppm chlorine demand                             |
| 3ppm manganese               | 3x1.2  | = 3.6ppm chlorine demand                             |
| 3ppm iron bacteria algae     | 3x2    | = 6.0ppm chlorine demand                             |
| 2ppm chlorine (for residual) | 2      | = 2.0ppm chlorine demand                             |
| 2ppm chlorine (for residual) | 2<br>2 | = 0.0ppm chlorine demand<br>= 2.0ppm chlorine demand |

#### Total

#### = 20.0ppm chlorine demand

#### NOTE: Chlorine demand plus chlorine residual = chlorine dosage

Each 1 gram tablet contains 180ppm available chlorine.  $180 \div$  chlorine demand = gallons treated In the above example -  $180 \div 20.0 = 9$  gallons/tablet

### **Determining Pump Production**

If the Sentry I Flow Meter is not being used, use the following formula to determine pump rate.

#### To determine pump rate:

- 1. Run water until pump starts.
- Allow pump to run until it stops.
  Measure water by gallon until the
- pump starts again.

4. Time pump until it stops.

This is the formula for determining the amount of gallons the pump is producing that determines your pump rate:

 $\frac{1}{(\text{In step 3})} \text{ gallons} \div \frac{1}{(\text{In step 4})} \text{ seconds x } 60 = \underline{\qquad} \text{gpm}$ 

Note: Pumping time must be measured in seconds-NOT minutes



| Table 1: Ten Tooth Gear Set: Drop – Rate |               |                 |  |  |  |  |
|------------------------------------------|---------------|-----------------|--|--|--|--|
| Settings                                 | Plugs Removed | 3:1 Gear Ratio  |  |  |  |  |
| А                                        | 1             | 21 MIN.         |  |  |  |  |
| В                                        | 2             | 10 MIN. 30 SEC. |  |  |  |  |
| С                                        | 3             | 7 MIN.          |  |  |  |  |
| D                                        | 4             | 5 MIN. 15 SEC.  |  |  |  |  |
| Е                                        | 5             | 4 MIN. 12 SEC.  |  |  |  |  |
| F                                        | 6             | 3 MIN. 30 SEC.  |  |  |  |  |
| G                                        | 10            | 2 MIN. 6 SEC.   |  |  |  |  |
| Н                                        | 12            | 1 MIN. 45 SEC.  |  |  |  |  |
| Ι                                        | 15            | 1 MIN. 24 SEC.  |  |  |  |  |
| J                                        | 20            | 1 MIN. 5 SEC.   |  |  |  |  |
| K                                        | 30            | 42 SEC.         |  |  |  |  |
| L                                        | 60            | 21 SEC.         |  |  |  |  |

|       |                    | Table | 2: Pelle | t Gear S | etting |    |  |  |  |  |
|-------|--------------------|-------|----------|----------|--------|----|--|--|--|--|
|       | Gallons Per Tablet |       |          |          |        |    |  |  |  |  |
|       |                    | 10    | 20       | 30       | 40     | 50 |  |  |  |  |
|       | 3                  | F     | С        | В        | В      | А  |  |  |  |  |
| lin   | 5                  | G     | D        | С        | С      | В  |  |  |  |  |
| er N  | 7                  | Ι     | F        | Е        | D      | С  |  |  |  |  |
| – P€  | 8                  | Ι     | G        | F        | D      | С  |  |  |  |  |
| - SUO | 9                  | J     | G        | F        | Е      | D  |  |  |  |  |
| allc  | 10                 | J     | G        | F        | Е      | D  |  |  |  |  |
| e G   | 12                 | J     | Н        | G        | F      | Е  |  |  |  |  |
| Rat   | 15                 | K     | Ι        | G        | G      | F  |  |  |  |  |
| du    | 20                 | K     | J        | Н        | G      | G  |  |  |  |  |
| Pu    | 25                 | L     | K        | Ι        | Н      | G  |  |  |  |  |
|       | 35                 | L     | K        | J        | Ι      | Ι  |  |  |  |  |
|       | 50                 | L     | L        | K        | J      | J  |  |  |  |  |

- 1) Turn on the electricity to the pump and turn the switch on the motor cover to "ON" and make sure the motor drive gear and idler gear move.
- 2) Snap the top plate onto the middle plate making sure the tabs are in place while only using finger tight fastening on the PVC nut & washer.
  - a. If you haven't put the 5 or 10 pound jar of chlorine in yet, turn the middle plate/top plate upside down and screw on the chlorine jar.
  - b. By putting your index fingers on the two tabs on the bottom of the middle plate and lining up the hole for the motor gear, place the assembly back on the bottom plate. Make sure the two fit together without "rocking".
- Finally, put the cover over the entire assembly and tighten it by twisting it. (Note: The Sentry I label should be on the same side as the drop tube)

Your Sentry I is now ready for operation. Make sure that the switch is in the "ON" position. Before leaving the installation and turning on the Sentry I, make sure the entire installation is watertight and vermin proof. If the installation does not meet these criteria, it will not be approved by some states. BWI recommends purchasing NSF listed and 70% active chlorine from your Sentry I dealer. If your dealer cannot provide you with this product, please call BWI at 507-247-5929 for assistance.



### Maintenance & Repair

#### Removing a motor gear

Removing the motor gear is very simple. This should not be necessary to remove, unless you are changing the motor on the SENTRY I. First, get two (2) screwdrivers and place one on each side of the motor gear. Pry the motor gear up and off. You will notice that there are two motor gear seals still attached to the underside of the motor gear. With your screwdriver, remove the motor gear seals. When reinstalling the motor gear, **install the seals first** by placing it in the space in the bottom plate and ensure you place a small amount of silicone onto the seals. Insert the seal with the cup side down – the flat side up. Make sure it is firmly in place before placing the motor gear over the motor. When placing the motor gear over the motor shaft, make sure that the "T" on the shaft slides down through the corresponding space on the motor gear. Hand tighten so that it slides down all the way.

#### Changing the motor on the Sentry I

Remove the motor gear. (See above directions). Unscrew the motor cover screw with a screwdriver and remove the motor cover. You will now be able to change motors or replace the fuse. You will see that the motor is held in by three (3) motor screws. Remove those three (3) screws and pull out the motor. When reassembling makes sure that the fuse is in place and that the wire nuts are securely fastened to the electrical connection.

### Tips for Installing and Servicing the Sentry I

- 1.) Tipping the pellet jar, top plate and middle plate assembly upside down makes it simple to change the pellet jar.
- 2.) Tightening the 5/16" pvc nut on the underside of the middle plate will insure that the Sentry I gives you trouble free operation. **Careful** over tightening will bind the pellet gear.
- 3.) Before replacing and tightening the cover, make sure that all plates fit securely together and are ready for operation.
- 4.) Make sure the switch is "**ON**" when leaving your customer. Also, double check to make sure the pellets are dropping unobstructed into the well.
- 5.) Do NOT cut a hole in the pellet jar.
- 6.) The Sentry I cover must always be secured and properly sealed.

#### **Preventive Maintenance**

- Lubricate the motor on a annual basis with a three (3) to one (1) oil (Do NOT use WD-40)
- Check pellet gear for chalk build up and clean if necessary (ensure pellet gear is DRY before inserting the pellet gear back into the unit.)

#### Notes

- Store chlorine pellets in a cool, dry place out of direct sunlight
- Avoid chlorine pellet fumes
- If for some reason you disconnect the Sentry I for a extended period of time, remove the pellets and place them in storage.
- Rotate stock on chlorine pellets. It is recommended to use tablets within a one year time frame.

### **Re-circulating Check Valve & Basket Installation**



## **SENTRY I Commercial Chlorinator Specifications**

| $\bigcirc$      |         | DLUCS     | EN PELLET DF | ROPS       |             |               |
|-----------------|---------|-----------|--------------|------------|-------------|---------------|
|                 | SETTING | PLUUS     | 16 Tooth N   | Aotor Gear | 10 Tooth Mo | otor Gear Set |
|                 |         | KENIO VED | 100%         | 50%        | 100%        | 50%           |
|                 | А       | 1         | 4min 40sec   | 9min 20sec | 21min       | 42min         |
|                 | В       | 2         | 2min 20sec   | 4min 40sec | 10min 30sec | 21min         |
|                 | С       | 3         | 1min 0sec    | 3min 6sec  | 7min        | 14min         |
|                 | D       | 4         | 1min 10sec   | 2min 20sec | 5min 15sec  | 10min 30sec   |
|                 | Е       | 5         | 56 sec       | 1min 52sec | 4min 12sec  | 8min 24sec    |
|                 | F       | 6         | 47 sec       | 1min 33sec | 3min 30sec  | 7min          |
|                 | G       | 10        | 28 sec       | 56 sec     | 2min 6sec   | 4min 12sec    |
|                 | Н       | 12        | 23 sec       | 47 sec     | 1min 45sec  | 3min 30sec    |
|                 | Ι       | 15        | 19 sec       | 37 sec     | 1min 24sec  | 2min 48sec    |
|                 | J       | 20        | 14 sec       | 28 sec     | 1min 5sec   | 2min 10sec    |
| ×               | K       | 30        | 9 sec        | 19 sec     | 42 sec      | 1min 24sec    |
| Accu-Dose Timer | L       | 60        | 4.7 sec      | 9 sec      | 21 sec      | 42 sec        |

Accu-Dose Timer Adjustment Knob 1% - 100% Run Time

# **Commercial Chlorinator**

The Sentry I Commercial Chlorinator is based on the technology of Better Water Industries, Inc. of Tyler, MN. BWI has the experience with this technology in both residential and commercial applications nationwide.



Sentry I Cover – Part # S 124701 Compatible with our 5 & 10 pound capacity jars.



**Commercial Cover - Part# S 124701C** Compatible with the high capacity hopper and reduces internal heat due to sun exposure



5# Jar - Part# CP 22005 10# Jar - Part# CP 22010 Utilized during low to high chlorine consumption (Capacity based on six month usage or less)



**25# Jar - Part# CP 22925** Optimized for maximum chlorine capacity (Requires commercial cover)



Motor Gear -Part# S 124709 Idler Gear - Part# S 124708 Designed for low (21 minute) drop rates to high (21 seconds) drop rates



**Commercial Motor Gear - Part# S 124709C** Delivers a maximum feed rate up to one tablet Every 4.7 seconds



Accu-Dose Timer - Part# M 120130 Provides external adjustments and cooling during long run cycles



**Recycling Timer - Part# M 120141** Provides cost-effective cooling for extended operating cycles



**Commercial Motor Plate - Part# S124724** Reduces excess heat and strengthens motor mounting



Current Sensor Switch - Part# M 120150

Operates 110 volt chlorinators with adjustable current sensitivity (used exclusively with 110 volt chlorinators during VFD applications which require "Clean" 60 Hz

| SENTRY I | Cover          | Jar              | Gear                     | Time                    | Voltage     | Plate    | Current Switch   |
|----------|----------------|------------------|--------------------------|-------------------------|-------------|----------|------------------|
| S        | 1-Regular      | 1-5#             | 1–Two (2) Gear set       | N–None                  | 1–110V      | 1–No     | 1–No             |
|          | 2-Commercial   | 2-10#            | 2-Commercial Gear        | A–Accu – Dose * 2       | 2–220V      | 2-Yes    | 2–Yes * <b>3</b> |
|          |                | 3–25# * <b>1</b> |                          | R-Recycling             |             |          |                  |
|          | 1*. Requires C | ommercial C      | over *2. Provides Extern | nal Adjustments *3. Rec | juires 110V | Chlorina | tor              |

| Diameter of         | Hole Capacity Gal.           |         |       |                                                      |
|---------------------|------------------------------|---------|-------|------------------------------------------------------|
| Well                | per Linear Ft.               | Example |       |                                                      |
| 1-1 1/4"            | 0.1                          | 1 ppm   | 2 ppm |                                                      |
| 2"                  | 0.2                          | 6       | 6     | Casing Size                                          |
| 3"                  | 0.4                          | 200     | 200   | Depth of Well (ft)                                   |
| 4"                  | 0.7                          | 80      | 80    | Static Water Level                                   |
| 5"                  | 1.1                          | 120     | 120   | Ft. of Water in casing                               |
| 6"                  | 1.5                          | 180     | 180   | Gallons of water in casing                           |
| 8"                  | 2.6                          | 15      | 15    | Pump flow rate (gpm)                                 |
| 10"                 | 4.1                          |         |       |                                                      |
| 12"                 | 5.9                          |         |       |                                                      |
| 14"                 | 8                            | 20      |       | 1ppm Chlorine (20 min contact time)                  |
| 16"                 | 10.5                         |         | 10    | 2ppm Chlorine (10 min contact time)                  |
| 18"                 | 13.2                         | x15     | x15   | X Pump Flow Rate (gpm)                               |
| 20"                 | 16.3                         | = 300   | = 150 | = Gallons of water needed for proper contact time    |
| 24'                 | 23.5                         | - 180   | - 180 | = Gallons of water in the well                       |
| 30"                 | 36.7                         | = 120   | = 0   | = Retention tank size needed for proper contact time |
| 36"                 | 52.9                         |         |       |                                                      |
| Diameter of<br>Tank | Gallons per Ft. of<br>Height |         |       |                                                      |

### Water Volume & Contact Time

Note: The above chart can also be used to determine the dimensions of the retention tank.



### **SENTRY I on a Storage Tank**

- 1) Basket must be mounted by incoming water. (Helping tablets to dissolve)
- 2) Drop Tube (3/4" CPVC) must be below minimum water line.
- 3) Chlorinator should be wired to well pump OR the chlorinator should be wired to the fill float if it is electrical. (When the tanks receive water the chlorinator should be running.)
- The Sentry I can be mounted to the wall or tank.
- The drop tube can have forty-five (45) degree angles in it.



### **Suggested Filtration**

Filters require 15 minute backwash and 10 minute down-rinse

1.5 Cubic ft / 10"x54" require 5gpm backwash and have a residential service flow-rate of 5gpm and a commercial flow-rate of 2.5~3gpm.

3 Cubic feet / 13"x54" require 8gpm backwash and have a residential service flow-rate of 10gpm and a commercial flow-rate of 5gpm

Typically this style filter will filter to ten micron or less and has an expected life of three to five years.

| Μ         | ulti-Media Car                                                                                                                                                                                                                                      | bon Filter                                                                                                                                                                                                                                                               |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | 1.5 Cubic ft<br>10"x54"                                                                                                                                                                                                                             | 3 Cubic ft<br>13"x54"                                                                                                                                                                                                                                                    |
| $\square$ | 18" Freeboard                                                                                                                                                                                                                                       | 18" Freeboard                                                                                                                                                                                                                                                            |
|           | Fill with <b>Filter Ag</b><br>up to 18" the Freeboard                                                                                                                                                                                               | Fill with <b>Filter Ag</b><br>up to 18" Freeboard                                                                                                                                                                                                                        |
| -         | 29 lb (1 Cubic ft)<br>of <b>20/50 mesh GAC</b>                                                                                                                                                                                                      | 58 lb (2 Cubic ft)<br>of <b>20/50 mesh GAC</b>                                                                                                                                                                                                                           |
| -         | 18 lb (1/4 Cubic ft)<br>of <b>Green Sand</b>                                                                                                                                                                                                        | 36 lb (1/2 Cubic ft)<br>of Green Sand                                                                                                                                                                                                                                    |
|           | 8 lb of<br>1/16"-1/8" Rock                                                                                                                                                                                                                          | 16 lb of<br>1/16"-1/8" Rock                                                                                                                                                                                                                                              |
|           | 8 lb of<br>1/4"-1/2" Rock                                                                                                                                                                                                                           | 16 lb of<br>1/4"-1/2" Rock                                                                                                                                                                                                                                               |
|           |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                          |
| Mult      | t <b>i-Media Non-C</b><br>1.5 Cubic ft<br>10"x54"                                                                                                                                                                                                   | Carbon Filter<br><sup>3 Cubic ft</sup><br>13"x54"                                                                                                                                                                                                                        |
| Mult      | t <b>i-Media Non-C</b><br>1.5 Cubic ft<br>10"x54"<br>18" Freeboard                                                                                                                                                                                  | Carbon Filter<br><sup>3 Cubic ft</sup><br>13"x54"<br>18" Freeboard                                                                                                                                                                                                       |
| Mult      | ti-Media Non-C<br>1.5 Cubic ft<br>10"x54"<br>18" Freeboard<br>Fill with Filter Ag<br>up to 18" the Freeboard                                                                                                                                        | <b>Carbon Filter</b><br>3 Cubic ft<br>13"x54"<br>18" Freeboard<br>Fill with Filter Ag<br>up to 18" Freeboard                                                                                                                                                             |
| Mult      | ti-Media Non-C<br>1.5 Cubic ft<br>10"x54"<br>18" Freeboard<br>Fill with Filter Ag<br>up to 18" the Freeboard<br>14 lb (1/4 Cubic ft)<br>of Birm                                                                                                     | Carbon Filter<br>3 Cubic ft<br>13"x54"<br>18" Freeboard<br>Fill with Filter Ag<br>up to 18" Freeboard<br>28 lb (1/2 Cubic ft)<br>of Birm                                                                                                                                 |
| Mult      | ti-Media Non-C<br>1.5 Cubic ft<br>10"x54"<br>18" Freeboard<br>Fill with Filter Ag<br>up to 18" the Freeboard<br>14 lb (1/4 Cubic ft)<br>of Birm<br>18 lb (1/4 Cubic ft)<br>of Green Sand                                                            | Sarbon Filter      3 Cubic ft      13"x54"      18" Freeboard      Fill with Filter Ag      up to 18" Freeboard      28 lb (1/2 Cubic ft)      of Birm      36 lb (1/2 Cubic ft)      of Green Sand                                                                      |
| Mult      | ti-Media Non-C<br>1.5 Cubic ft<br>10"x54"<br>18" Freeboard<br>Fill with Filter Ag<br>up to 18" the Freeboard<br>14 lb (1/4 Cubic ft)<br>of Birm<br>18 lb (1/4 Cubic ft)<br>of Green Sand<br>8 lb of<br>1/16"-1/8" Rock                              | Sarbon Filter      3 Cubic ft      13"x54"      18" Freeboard      Fill with Filter Ag      up to 18" Freeboard      28 lb (1/2 Cubic ft)      of Birm      36 lb (1/2 Cubic ft)      of Green Sand      16 lb of      1/16"-1/8" Rock                                   |
|           | ti-Media Non-C<br>1.5 Cubic ft<br>10"x54"<br>18" Freeboard<br>Fill with Filter Ag<br>up to 18" the Freeboard<br>14 lb (1/4 Cubic ft)<br>of Birm<br>18 lb (1/4 Cubic ft)<br>of Green Sand<br>8 lb of<br>1/16"-1/8" Rock<br>8 lb of<br>1/4"-1/2" Rock | Sarbon Filter      3 Cubic ft      13"x54"      18" Freeboard      Fill with Filter Ag      up to 18" Freeboard      28 lb (1/2 Cubic ft)      of Birm      36 lb (1/2 Cubic ft)      of Green Sand      16 lb of      1/16"-1/8" Rock      16 lb of      1/4"-1/2" Rock |

### **Open – Air Installation**

#### **Mandatory Adjustments**

- 1) Adjust the Sentry I Chlorinator with the flow rates found in step 12. (Refer to pages DM-5, DM-6 for chlorine dosage and settings.)
- 2) Adjust the Air-DrawVenturi between 20 and 30psi head pressure as shown with inlet pressure gauge when the existing well pump is running. (By adjusting the Air-Draw during the well pump cycle it matches the true flow rate of the well.) The Air-Draw tube is the small gray tube located below the Sentry I Chlorinator. This is adjusted by loosening the gray plastic nut and slightly sliding the gray tube up and down. By moving the tube <u>up</u> it restricts the incoming flow rate, increases head pressure, and increases aeration. By moving the tube <u>down</u> it increases the incoming flow rate, decreases head pressure, and reduces aeration.
- 3) Adjust the fill solenoid valve to match the maximum well flow rate. While the existing well pump is running, adjust flow control knob on the solenoid clockwise until there is a slight pressure drop on the outlet pressure gauge.

#### **Optional Adjustments**

- 1) On the 10gpm and 25gpm systems, the pressure switch may be adjusted for special applications. Refer to the pressure switch cover for instructions. (On units that do not use a constant pressure valve (CPV) the bladder tank must be charged at two (2) psi less than kick in pressure.)
- 2) Some applications require fine-tuning the CPV to match usage. To do this flow water at a normal constant rate and adjust the bolt on the end of the bell to desired pressure. (Factory setting is 50psi to match the 40/60psi pressure switch. It is recommended to maintain this 10psi differential.)

### Installation

- 1) Shut off water to home and remove all pressure to Open-Air System
- 2) Lubricate all union o-rings and attach the solenoid assembly to tank inlet union
- 3) Attach brass CPV assembly to the brass outlet union including the large black rubber washer
- 4) Attach both assemblies to ball valve assembly
- 5) Connect 3/8" pressure switch line to the two quick connectors (located on the J-box and on the ball valve assembly)
- 6) Install tank plugs & blow down ball valves
- 7) Attach bladder tank to CPV assembly (Over tightening may cause a severe leak)
- 8) Place Sentry I Chlorinator on plastic stand pipe and firmly secure the <sup>3</sup>/<sub>4</sub>" CPVC drop tube to the bottom of the chlorinator
- 9) Plumb additional treatment equipment after Open-Air System such as a multi-media filter
- 10) Plumb overflow to adequate drain or secure a five (5) gallon pail with safety float to shut off the existing well pump or water supply
- 11) Plumb vent tube in a naturally rising configuration from the Open-Air System (check local building codes for proper installation)
- 12) Pressurize the water system up to the Open-Air
- 13) Flow rate well with Sentry Flow Meter (Refer to Sentry Flow Meter literature on DM-18)
- 14) Energize system and adjust Air-Draw, Solenoid, Sentry I Chlorinator, and Brass CPV (Dedicated 20amp 110volt service or 20 amp 220 volt service is required)

Note: If the pump makes a "growling" noise unplug unit immediately and draw water into pump by applying a light vacuum to an out outgoing water line such as the 3/8" pressure switch line.

- 15) Fill Sentry I Chlorinator with appropriate chlorinating tables (One (1) gram BWI Chlorinating tablets are recommended.)
- 16) Check for leaks

### **Open – Air Installation Summary**





### **Open – Air Specifications**

|                        | SEN     |                         |                  |         |               |
|------------------------|---------|-------------------------|------------------|---------|---------------|
| Continuous Flow        | 10 gpm  |                         | 18 gpm           | 25 gpm  | Max Vacuum    |
| Max Flow               | 14 gp   | om                      | 22 gpm           | 28 gpm  | Max Air Flow  |
| Capacity               | 130 (   | 130 gal                 |                  | 250 gal | Voltage       |
| Voltage                | 115 V   | 'AC                     | 115 VAC          | 230 VAC | Operating Cur |
| Operating Current      | 10 ar   | np                      | 10 amp           | 6.8 amp | Power         |
| Max Current            | 12 ar   | np                      | 12 amp           | 8 amp   | Frequency     |
| Power                  | 1/2ľ    | пр                      | 1/2 hp           | 3/4 hp  |               |
| Frequency              | 60 H    | lz                      | 60 Hz            | 60 Hz   |               |
| Dimensions (LxWxH)     | 43"x27' | 'x59"                   | 43"x27"x59"      |         |               |
| Clearance Needed       | 45"x27' | 'x65"                   | 45"x27"x65"      |         |               |
| AB Weight              | 165     | lb                      | 165 lb           |         |               |
| Gas Reduction          | 190     | lb                      | 200 lb           |         |               |
| Radon                  | 195     | lb                      | 195 lb           |         |               |
|                        |         |                         |                  |         |               |
|                        | SENT    | RY I                    |                  |         |               |
| Pellet Feed Rate (Max) |         |                         | 8 Pellets per mi | inute   |               |
| Pellet Feed Rate (MIN) |         | 1 Pellet per 21 minutes |                  |         |               |
| Pellet Storage         |         | 4                       | 5 or 10 lbs cont | ainer   |               |





### **Scheduled Maintenance**

- 1) Two (2) days after installation, the chlorine residual needs to be tested between 0.5 and 3.5ppm. (BWI recommends 1.5-2.5ppm residual) Test water from a down-stream test port; do not check residual from water dipped out of the tank. If the Sentry I Chlorinator needs adjustment, repeat this step every two (2) days until desired residual is achieved.
- 2) Check chlorine tablet level inside the Sentry I chlorinator every month until a refill schedule is determined. A typical house-hold consumes 8-15 lbs per year.
- 3) Chlorine residual should be tested at a minimum of every six (6) months or anytime any of the treatment equipment is serviced. If the Sentry I Chlorinator needs adjustment, repeat step one (1).
- 4) Proper float operations should be checked every six (6) months. Flow water and visually confirm proper float operation. (The unit should fill when the upper electronic float, not the mechanical ball float, drops and opens the solenoid.)
- 5) While checking floats, ensure the bottom of drop-tube is remaining below the water level at all times.
- 6) Proper pressure operation should be check every year. Flow water until pump kicks in and record pressure. Then shut water off and check kick-out pressure and record. Factory setting is 40/60psi.

Note: Some water applications may require increased maintenance checks

**Note 2:** BWI recommends professional maintenance contracts with most treatment applications that require the Sentry I Open-Air System.

### **Open-Air Parts List**



### **Sentry I Flow Meter**

| 1.)        | Blow off debris in line before attaching Sentry Flow Meter                                                                                                                                                                                                                                                                                         |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.)<br>3.) | Attach the flow meter to a hydrant or hose bib by the pressure tank.<br>Open the hydrant or hose bib to maximum flow. Partially close the ball valve to a slow water run until the pump<br>starts. Read the pressure gauge <b>psi</b> (kick-in pressure)                                                                                           |
| 4.)        | Open the ball valve. Read the flow meter gpm (No-Head Pressure)                                                                                                                                                                                                                                                                                    |
| 5.)        | Close the ball valve. Allow pump to run until it turns off.                                                                                                                                                                                                                                                                                        |
|            | Read the pressure gauge Psi (kick-out pressure)                                                                                                                                                                                                                                                                                                    |
| 6.)        | With the pump running adjust the ball valve until the pressure gauge reads thirty (30psi.) Allow the water to run at least one (1) minute at this pressure. Read the flow meter. Use this reading in conjunction with the Sentry I sizing chart located on DM-6. It also tells you how much water is available for other appliances and equipment. |
| 7.)        | With the pump running adjust the ball valve until the pressure gauge shows forty (40psi.) Allow the water to run at least one (1) minute at that pressure. Read the flow meter. The difference in the thirty (30psi) reading and the forty (40psi) reading determines if the pump is in good condition.                                            |
|            | gpm                                                                                                                                                                                                                                                                                                                                                |
| The ga     | llons per minute should not vary more than twenty-five (25) percent.                                                                                                                                                                                                                                                                               |
| T<br>ra    | he SENTRY I Flow Meter provides accurate flow rates of pumps from zero (0) to one-hundred (100) psi, at flow ates anywhere from four (4) to twenty-eight (28) gpm.                                                                                                                                                                                 |

Note: Damage to the flow meter gauge will occur if exposed to freezing temperatures for extended periods of time.

### **Additional Value**

The Sentry I Flow Meter is compatible and a great tool to use when providing routine maintenance on the Open-Air units. The installation kit has two (2) built in test ports that are well-suited with the Sentry Flow Meter. The  $1^{st}$  test port is located on the solenoid side of the unit. This port will allow you to test the well flow rate. The  $2^{nd}$  test port is for testing chlorine residual coming from the Open-Air unit itself as well as testing the Open-Air flow rate.

The unique design was engineered after years of trying to diagnose water pressure problems in various applications. By adjusting the versatile ball-valve, the flow meter can tell you the condition of the pressure tank, pressure switch, pump and if there are any restrictions within the water line. This will help to determine if the problem is in the water pump system or in the water distribution system. Other common usages are detecting scaling in pipes in city water applications by showing low flow rates and severe pressure drops.

### **Trouble Tree**

Attention: All diagnostics should be preformed within normal operated water levels. If electrical work is needed please consult a certified electrician.

| SYMPTOM                                                     | POSSIBLE CAUSES                                                      | SOLUTION                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pump will not Pump<br>Water                                 | Air-Locked Pump<br>(New Installation or after<br>emptying unit)      | Remove the 3/8" flex tube from the pressure switch and circulate water. (If water doesn't circulate apply suction to the 3/8" tube to prime the pump.)                                                                                                                            |
| Pump Loses Pressure<br>Over Night                           | Air-Locked Pump<br>(Drawing the unit down<br>too far)                | The incoming water should be greater or equal to the outgoing wa-<br>ter. Use flow restrictor on outgoing water if needed and adjust low-<br>er float up two inches.                                                                                                              |
| Pump Loses Pressure<br>During Low-Volume<br>Usage (showers) | Air-Locked Pump<br>(Gasses in Water such as<br>Methane Applications) | A standard 40/60 pressure unit is needed for this application. To convert an Aqua Booster to 40/60, remove the constant pressure valve, remove the two gallon bladder tank, and add adequate sized bladder tank for unit. (10gpm use 20gal, 18gpm use 33gal, and 25gpm use 44gal) |
| Low Water Pressure<br>(Flow Test System<br>With Flow Meter) | Coated / Fouled Impellers                                            | Clean wet end of pump with solvent that dissolves unwanted ma-<br>terial.                                                                                                                                                                                                         |
|                                                             | Large Internal Leak                                                  | Shutoff out-going water. System should build up and hold pressure.<br>If not check for internal leak or faulty check valve.                                                                                                                                                       |
|                                                             | Improperly Adjusted Con-<br>stant Pressure Valve                     | Adjust constant pressure valve by flowing low to a normal amount<br>of water. Adjust bolt on black bell housing to around 55psi on<br>40/60 applications. (These instructions are rule-of-thumb)                                                                                  |
|                                                             | Over Pumping                                                         | Verify flow rate of system and compare with demand.                                                                                                                                                                                                                               |
|                                                             | Faulty Wet-End                                                       | Replace wet end of pump (Units before 2004 may need unit specific wet-end)                                                                                                                                                                                                        |
|                                                             | No Power to Unit                                                     | Check outlet for appropriate power source                                                                                                                                                                                                                                         |
| Pump Motor not                                              | Faulty Pressure Switch                                               | Remove the gray J-box cover and inspect the pressure switch,<br>switch contacts, and voltage at switch. (If contacts are burnt, check<br>for dedicated adequate power source, bladder tank, and constant<br>pressure valve if equipped.)                                          |
| Running / Spinning                                          | Faulty / Locked Wet End                                              | Inspect pump end, remove screen, and manually turn the motor shaft. (should spin easily)                                                                                                                                                                                          |
|                                                             | Faulty Lower Float                                                   | Ohm test the low float for proper operations. The lower float is normally open in the downward position.                                                                                                                                                                          |
|                                                             | Faulty Pump Motor                                                    | Replace Pump Motor                                                                                                                                                                                                                                                                |

| SYMPTOM                       | POSSIBLE<br>CAUSES                             | SOLUTION                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Papid Pump Cycling            | Faulty Pressure<br>Tank                        | Check pressure in bladder tank. (factory setting for the 2 gal tank is 28 psi and 38 psi for larger ones)                                                                                                                                                                                                                                                                                                         |
| (faster than one second)      | No Pulse Plug in<br>Pressure Switch            | ONLY used in applications with bladder tanks larger than 2 gallons.<br>Pulse plugs are located below the 1/4" NPT thread of the pressure<br>switch.                                                                                                                                                                                                                                                               |
|                               | Faulty Pressure<br>Tank                        | Check pressure in bladder tank. (2 gal tanks 28 psi, larger ones 38 psi factory)                                                                                                                                                                                                                                                                                                                                  |
|                               |                                                | Option #1: Clean, service, or replace valve. (Red and white plastic Cycle<br>Stop valves should be replaced with the brass constant pressure valve.)                                                                                                                                                                                                                                                              |
| Short Pump Cycling            | Faulty Constant<br>Pressure Valve              | Option #2: Remove valve and replace 2 gallon bladder tank with ade-<br>quate sized bladder tank for system. (Systems prior to 2004 use a black<br>"T" style constant pressure valve. Remove the spring and plastic plunger<br>under the 1" pressure gauge plug. Then replace the 2 gallon bladder tank<br>with adequate sized bladder tank for system.)(10gpm use 20gal, 18gpm<br>use 33gal, and 25gpm use 44gal) |
|                               | Faulty Check<br>Valve or Internal<br>Leak      | Shut off water to house, let the system build up pressure and shut off. If<br>the unit losses pressure there is an internal leak or bad check valve.                                                                                                                                                                                                                                                              |
|                               | Bad Wire Con-<br>nection                       | Check connections and voltages (Refer to Voltage Check cut sheet)                                                                                                                                                                                                                                                                                                                                                 |
| Unit Not Filling              | Faulty Solenoid                                | Replace solenoid only                                                                                                                                                                                                                                                                                                                                                                                             |
|                               | Valve                                          | Replace entire solenoid valve                                                                                                                                                                                                                                                                                                                                                                                     |
|                               | Faulty Upper<br>Float                          | Ohm test the upper float (Normally closed in down position) (If chlorina-<br>tor is running when upper float is down, the float is most likely GOOD)                                                                                                                                                                                                                                                              |
| Unit Filling Slow (Inlet      | Solenoid Valve<br>Direction                    | On new installs verify flow direction of solenoid valve                                                                                                                                                                                                                                                                                                                                                           |
| pressure gauge below          | Low Incoming                                   | Check incoming water flow / pressure                                                                                                                                                                                                                                                                                                                                                                              |
| 5psi)                         | Water Flow /<br>Pressure                       | Check pre-filter if installed                                                                                                                                                                                                                                                                                                                                                                                     |
| Unit Filling Slow (Inlet      | Improperly Ad-<br>justed Safety<br>Float Valve | On new installs verify proper safety float adjustment. (Refer to installa-<br>tion instruction) (Electronic floats are factory set and should not need to<br>be adjusted.)                                                                                                                                                                                                                                        |
| Pressure gauge above<br>5psi) | Plugged Air-                                   | Readjust Air-Draw tube (See installation instructions and start by tap-<br>ping down the Air-Draw tube slightly)                                                                                                                                                                                                                                                                                                  |
|                               | Draw                                           | If the Air-Draw is internally coated with debris, clean by dissolving de-<br>bris with a solvent.                                                                                                                                                                                                                                                                                                                 |

| SYMPTOM              | POSSIBLE CAUSES                       | SOLUTION                                                                                                                                                                |
|----------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit is Over Flowing | Debris in Solenoid Valve              | Clean Valve (In high turbidity water a spin-down filter or sand separator should be installed ahead of the solenoid.)                                                   |
|                      | Improperly Adjusted Float<br>Settings | On new installs verify proper safety float adjustment. (Refer<br>to installation instruction) (Electronic float are factory set<br>and should not need to be adjusted.) |
|                      | Faulty Upper Float                    | Ohm test the upper float (contact is open when float is up) (If<br>chlorinator is running when upper float is in up position, the<br>float is most likely BAD)          |

| SYMPTOM                | POSSIBLE CAUSES            | SOLUTION                                                      |
|------------------------|----------------------------|---------------------------------------------------------------|
| 1) Broken Motor Gear   | Drop Tube not Always in    | Drop-tube should be 24" long or always submerged in water     |
| 2) Intense Chlorine    | Water (Open-Air or Storage | The incoming water should be greater or equal to the out-     |
| Smell Under Chlorina-  | Tanks)                     | going water. Use flow restrictor on outgoing water if needed. |
| tor Cover              | High Static Water Level    | Extend new Drop Tube with point in water 1' and NO holes      |
| 3) Heavy Corrosion or  | (20' or less)              | drilled in tube                                               |
| Rust on Motor          | Faulty Cover Seal          | Replace white foam cover seal.                                |
| 4) Top and Middle      | Hole in Pellet Jar         | Replace jar                                                   |
| Plate Separation       | Hole in Chlorinator Cover  | Replace cover                                                 |
| 5) Moisture in Pellets | Conduit not Sealed         | Caulk one end of conduit                                      |
| 6) Heavy Chalk on Pel- | Chlorinator Cover Re-      | Install cover                                                 |
| let Gear               | moved                      |                                                               |
| Motor not Running      | No Power to Motor          | Check and/or replace fuse(s)                                  |
|                        |                            | Check for power on both sides of switch                       |
|                        |                            | Check electrical connections                                  |
|                        |                            | Replace upper float (Open-Air applications)                   |
|                        | Armature not Turning       | Loosen and lubricate armature with 3 in 1 oil                 |

#### Sentry I Chlorinator on Open-Air System or Holding Tank

**NOTE:** For proper sanitation and oxidation the pH of the water must be between 6.8 and 7.6. Failure to correct pH problems may result in unsatisfactory results and possible equipment damage.

A filter is vital to the success of desired water quality. Once the Sentry I or the Sentry I Open-Air System has oxidized the contaminants in the water, they must be removed prior to entering the residence or building's water system. Small, inline sediment filters will not work for these applications.

After years of field-testing results, BWI recommends the two Multi-bed filters as described on pages DM-11 and TU-4 of the BWI dealer manual. The use of carbon is at the discretion of the homeowner. That decision to use the Multi-bed Filter with or without carbon depends on if the homeowner wants chlorine for continual disinfection or would prefer no chlorine residual at all. Variations from these suggested filters may affect the water quality.

# **Test Survey**

| I.        | Well:                                        |
|-----------|----------------------------------------------|
|           | 1. Well Ageyrs                               |
|           | 2. Well Depthft                              |
|           | A. Static Water Levelft                      |
|           | B. Pump Depthft                              |
|           | 3. Casing Size                               |
|           | A. Type: Steel Plastic Cement                |
| II.       | Pump:                                        |
|           | 1. Ageyrs                                    |
|           | 2. HpVoltagePhase                            |
|           | 3. Type: Jet Submersible StrokeVFD           |
| III.      | Flow Rate:                                   |
|           | 1. GPM GPD                                   |
| IV.       | Pressure Tank:                               |
|           | 1. Size: X Gallon                            |
|           | 2. Type: Bladder Non-bladder                 |
| <b>V.</b> | Incoming Lines:                              |
|           | 1. Size:inches.                              |
|           | 2. Type: Copper Galvanized Plastic           |
| VI.       | Lavatory:                                    |
|           | 1. Hard Water Soft Water                     |
| VII.      |                                              |
| 1.        | Hardnessgpg                                  |
| 2.        | Iron (rust)ppm BacterialRed WaterClear Water |
| 3.<br>4   | рн<br>тря                                    |
| 4.<br>5   | TDSppill<br>Tanninsppm                       |
| 5.<br>6.  | Methane Yes No                               |
| 7.        | Radon      Yes      No                       |
| 8.        | Nitratesppm                                  |
| 9.        | Sulfatesppm                                  |
| 10.       | Hydrogen Sulfide: Yes No ppm                 |
| 11.       | Other                                        |
| VIII.     | Type of Equipment Present:                   |
|           | 12                                           |
|           | 34                                           |
|           |                                              |
| ustomer   | Wants/Comments:                              |
|           |                                              |
|           |                                              |
|           |                                              |
|           |                                              |
| uture App | ointment: Date Time                          |

| System Notes |  |  |  |  |
|--------------|--|--|--|--|
|              |  |  |  |  |
|              |  |  |  |  |
|              |  |  |  |  |
|              |  |  |  |  |
|              |  |  |  |  |
|              |  |  |  |  |
|              |  |  |  |  |
|              |  |  |  |  |
|              |  |  |  |  |
|              |  |  |  |  |
|              |  |  |  |  |
|              |  |  |  |  |
|              |  |  |  |  |
|              |  |  |  |  |
|              |  |  |  |  |
|              |  |  |  |  |
|              |  |  |  |  |

### Warranty

## WE THE PEOPLE of Better Water Industries, in order to truly provide you, our CUSTOMER, with the highest quality of water, both today and tomorrow, do provide you with these LIMITED WARRANTY'S.

#### Sentry I Open – Air System

Article I: Better Water Industries, Inc. 209 North Tyler St. Tyler, MN 56178 ("BWI"), warrants and promises that its Sentry I Open-Air System is free of defects in materials and workmanship at the time the Sentry I Open-Air System leaves the factory.

Article II: If a defect develops in any of the Sentry I Open-Air System, except for the chlorinator, for up to twelve (12) months from ship date, Better Water Industries, Inc. will, at its option, replace, or rebuild said defective part according to Article V.

*Article III:* If a defect develops in chlorinator electronics for up to twenty-four (24) months from ship date, Better Water Industries, Inc. will, at its option, replace, or rebuild said defective part according to Article V.

*Article IV:* If a defect develops in chlorinator housing or any plastics of the chlorinator for up to sixty (60) months from ship date, Better Water Industries, Inc. will, at its option, replace, or rebuild said defective part according to Article V.

Article V:

Section One: Return the defective part to BWI Inc. postage prepaid.

Section Two: Enclose a return tag with a written description of the defect.

Section Three: Also enclose a written statement assuring BWI Inc. that the product was properly installed, not misused or abused.

Section Four: Replacements or Credit will be issued after BWI Inc. inspects the unit and concurs on said defect.

Article VI: BWI Inc. warrants all replacement parts for ninety (90) days from date of shipment.

Article VII: There are no other warranties, whether expressed or implied, which extend beyond this written warranty.

#### Sentry I Dry – Pellet Chlorinator

Article I: Better Water Industries, Inc. 209 North Tyler Street, Tyler, Minnesota 56178, warrants and promises that it's Sentry I Chlorinator is free of defects in materials and workmanship at the time the Sentry I leaves the factory.

Article II: If a defect develops in any of the electrical components for up to twenty-four (24) months from the shipment date, Better Water Industries, Inc. will, at its option, replace, repair, or rebuild the motor according to the Article IV.

*Article III:* If a defect develops in the housing or any other parts of the Sentry I for up to sixty (60) months from shipment date, Better Water Industries, Inc. will, at its option replace, or rebuild the unit according to Article IV.

Article IV:

Section One: Return the defective part to BWI Inc. postage prepaid

Section Two: Enclose the return tag with a written description of the defect.

Section Three: Also enclose a written statement assuring BWI Inc. that the products were properly installed, not misused or abused.

Section Four: Replacement or Credit will be issued after BWI Inc. inspects the unit and concurs on the said defect.

Article V: BWI Inc. warrants all replacement parts for ninety (90) days from date of shipment.

#### Sentry I Commercial Dry – Pellet Chlorinator

*Article I:* Better Water Industries, Inc. 209 North Tyler Street, Tyler, Minnesota 56178, warrants and promises that it's Sentry I Commercial Chlorinator is free of defects in materials and workmanship at the time the Sentry I leaves the factory.

*Article II:* If a defect develops in any of the electrical components for up to twelve (12) months from the shipment date, Better Water Industries, Inc. will, at its option, replace, repair, or rebuild subject to the following.

Article III:

Section One: Return the defective part to BWI Inc. postage prepaid.

Section Two: Enclose a return tag with a written description of the defect

Section Three: Also enclose a written statement assuring BWI Inc. that the product was properly installed, not misused or abused.

Section Four: Replacement or Credit will be issued after BWI Inc. inspects the unit and concurs with said defect.

Article IV: BWI Inc. warrants all replacement parts for ninety (90) days from date of shipment.

**Professional installation is required for warranty.** 

There are no other warranties, whether expressed or implied, which extend beyond this written warranty.

IN WITNESS WHEREOF, I have hereunto subscribed my name:

L. Burckhardt, President BWI Inc.

T. Burckhardt, Vice-President BWI Inc.

Copyrighted BWI Inc. 2008

**BWI** – We take pride in protecting your water.