
Reverse Osmosis User's Manual

Model

LT-200, LT-300

LT-300 Pictured

This Page Left Blank

Table of Contents

NTRODUCTION	4
SAFETY	4
FEED WATER AND OPERATION SPECIFICATIONS	5
REJECTION, RECOVERY AND FLOW RATES	5
SYSTEM INSTALLATION AND START-UP PROCEDURES	6
MEMBRANE ELEMENTS	8
LT-200, LT-300 SYSTEM IDENTIFICATION	11
LT-200 MEMBRANE FLOW DIAGRAM	
LT-300 MEMBRANE FLOW DIAGRAM	16
DESIGN BASIS FOR LT-200, LT 300	17
OPERATING DO's AND DON'Ts	18
MAINTENANCE PROCEDURES	18
MEMBRANE REMOVAL AND REPLACEMENT	20
PREPARING UNIT FOR STORAGE OR SHIPMENT	22
REVERSE OSMOSIS TROUBLESHOOTING	23
TEMPERATURE CORRECTION FACTORS FOR MEMBRANE	25
OPERATION	27
DRAWINGS	28

INTRODUCTION

Your LT-Series system is a durable piece of equipment which, with proper care, will last for many years. This User's Manual outlines installation, operation, maintenance and troubleshooting details vital to the sustained performance of your system.

The test results which are included with this User's Manual indicate your system's permeate (product) and concentrate (waste) test results.

If your system is altered at the site of operation or if the feed water conditions change, please contact your local dealer or distributor to determine the proper recovery for your application.

NOTE: IN ORDER TO MAINTAIN THE MANUFACTURER'S WARRANTY, AN OPERATING LOG MUST BE MAINTAINED AND COPIES WILL NEED TO BE SENT TO YOUR LOCAL DEALER OR DISTRIBUTOR FOR REVIEW.

NOTE: PRIOR TO OPERATING OR SERVICING THE REVERSE OSMOSIS SYSTEM, THIS USER'S MANUAL MUST BE READ AND FULLY UNDERSTOOD. KEEP THIS AND OTHER ASSOCIATED INFORMATION FOR FUTURE REFERENCE AND FOR NEW OPERATORS OR QUALIFIED PERSONNEL NEAR THE SYSTEM.

<u>SAFETY</u>

The Safety section of this User's Manual outlines the various safety headings used throughout this manual's text and are enhanced and defined below:

NOTE: INDICATES STATEMENTS THAT PROVIDE FURTHER INFORMATION AND CLARIFICATION.

CAUTION: INDICATES STATEMENTS THAT ARE USED TO IDENTIFY CONDITIONS OR PRACTICES THAT COULD RESULT IN EQUIPMENT OR OTHER PROPERTY DAMAGE.

WARNING: INDICATES STATEMENTS THAT ARE USED TO IDENTIFY CONDITIONS OR PRACTICES THAT COULD RESULT IN INJURY OR LOSS OF LIFE. FAILURE TO FOLLOW WARNINGS COULD RESULT IN SERIOUS INJURY OR EVEN DEATH.

DO NOT UNDER ANY CIRCUMSTANCE REMOVE ANY CAUTION, WARNING, OR OTHER DESCRIPTIVE LABELS FROM THE SYSTEM.

FEED WATER AND OPERATION SPECIFICATIONS

Nothing has a greater effect on a reverse osmosis system than the feed water quality.

NOTE: IT IS VERY IMPORTANT TO MEET THE MINIMUM FEED WATER REQUIREMENTS. FAILURE TO DO SO WILL CAUSE THE MEMBRANES TO FOUL AND VOID THE MANUFACTURER'S WARRANTY.

OPERATING LIMITS

Operating Limits

Maximum Feed Temperature °F (°C)	85 (29.00)	Maximum Free Chlorine ppm	0
Minimum Feed Temperature °F (°C)	40 (4.44)	Maximum TDS ppm	1000
Maximum Ambient Temperature °F (°C)	120 (48.89)	Maximum Hardness gpg††	0
Minimum Ambient Temperature °F (°C)	40 (4.44)	Maximum pH (Continuous)	11
Maximum Feed Pressure psi (bar)	85 (5.86)	Minimum pH (Continuous)	5
Minimum Feed Pressure psi (bar)	45 (3.10)	Maximum pH (Cleaning 30 Min.)	12
Maximum Operating Pressure psi (bar)	120 (8.27)	Minimum pH (Cleaning 30 Min.)	2
Maximum SDI Rating SDI	<3		
Maximum Turbidity NTU	1		

Test Parameters: 550 TDS Filtered (5 Micron), De-Chlorinated, Municipal Feed Water, 65 psi (4.50 bar) Feed Pressure, 100 psi (6.89 bar) Operating Pressure, 77 Degrees F (25 Degrees C), Recovery as stated, 7.0 pH. Data taken after 60 minutes of operation.

† Low temperatures and high feed water TDS levels will significantly affect systems production capabilities. Computer projections should be run for individual applications which do not meet or exceed minimum and maximum operating limits.

†† Scale prevention measures must be taken to prolong membrane life.

NOTE: HIGHER TDS AND/OR LOWER TEMPERATURES WILL REDUCE THE SYSTEM'S PRODUCTION.

REJECTION, RECOVERY AND FLOW RATES

LT-Series reverse osmosis systems are designed to produce permeate water at the capacities indicated by the suffix in the system's name under the conditions listed above. For example, the LT-300 produces 300 gallons per day of permeate water at the listed operating test conditions.

The amount of total dissolved solids (TDS) rejected by the membrane is expressed as a percentage. For example, a 98.5% rejection rate means that 98.5% of total dissolved solids do not pass through the membrane. To calculate the % rejection, use the following formula:

% Rejection = [(Feed TDS – Product TDS) / Feed TDS] x 100

Example:

98.5% = [(550-8.25)/550] x 100

A NOTE: ALL TDS FIGURES MUST BE EXPRESSED IN THE SAME UNITS, TYPICALLY PARTS PER MILLION (PPM) OR MILLIGRAMS PER LITER (MG/L).

LT-Series reverse osmosis systems are designed to reject up to 98.5% NaCl, unless computer projections have been provided or stated otherwise.

The amount of permeate water recovered for use is expressed as a percentage. To calculate % recovery, use the following formula:

% Recovery = (Product Water Flow Rate / Feed Water Flow Rate) x 100

Example:

28% = (0.14/0.50) x 100

A NOTE: ALL FLOW RATES MUST BE EXPRESSED IN THE SAME UNITS, TYPICALLY GALLONS PER MINUTE (GPM).

SYSTEM INSTALLATION AND START-UP PROCEDURES

- Inspect the system for any damage that could have occurred during shipment. Although our systems have been individually inspected, complete a quick inspection of the fittings, tubing and other components.
- 2. Please provide a reasonable amount of space for installation and leave 6 inches of space below the filter housings for ease of maintenance.

NOTE: THE REVERSE OSMOSIS SYSTEM SHOULD BE INSTALLED INDOORS AND IT IS SUGGESTED THAT IT NOT BE IN DIRECT SUNLIGHT OR EXTREME COLD.

 Connect the 3/8" or 1/4" tube fitting to an incoming water source. The minimum water pressure should be at least 30 psi. The system's minimum operating pressure is 80 PSI, but the optimum operating pressure is 100 psi.

NOTE: DO NOT OPERATE AT A PRESSURE EXCEEDING 125 PSI. The operating pressure can be increased on the face of the booster pump by turning the hex screw clockwise.

- 4. Connect the concentrate 1/4" tubing (waste) line to drain.
- 5. Plug the booster pump transformer into a power supply of 110 or 220 volts.
- 6. This system has been designed with an auto-flush restrictor. This restrictor automatically flushes the reverse osmosis system for 30 seconds every time it starts up and once every hour when the system is producing water.

AUTOMATICALLY WHEN THE BLADDER TANK IS FULL.

- The sediment filter and carbon must be serviced regularly for optimal performance.
 The filters and water quality should be checked every two weeks minimum.
- Dispose of the product water until the conductivity of the product water reaches your desired level. Use any TDS or Conductivity meter to monitor the product water quality. A minimum quality of 96% NaCl rejection is recommended.

NOTE: ANY CHLORINE EXPOSURE WILL DAMAGE THE MEMBRANE PERMANENTLY.

9. This system has been factory wired and preset with a pressure switch at 20 - 40 psi, which is only to be used with a pressurized bladder tank. If using an atmospheric storage tank, a float switch will be required to turn the system on and off.

MEMBRANE ELEMENTS

LT-Series reverse osmosis systems come pre-loaded with Thin Film Composite (TFC) HF4 High Flow Low Energy membranes, unless otherwise specified. General membrane element performance characteristics are listed on the next page.

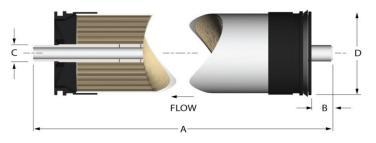
HF4-STANDARD

- Membrane Type:
- Maximum Operating Temperature:
- Maximum Operating Pressure:
- PH Range, Continuous Operation*:

* Maximum temperature for continuous operations above pH10 is 95° F (35°c)

Polyamide	Thin-Fi	lm Composite	
-----------	---------	--------------	--

- 113°F (45°C)
- 600 psi (41 bar)
- *: 2 11


PH Range, Short Term Cleaning (30 Min.): 1 – 13

5

- Maximum Feed Silt Density Index:
- Chlorine Tolerance: 0 ppm

	Product Specifications									
Part Number	Description	Applied Pressure psi (bar)	Permeate Flow Rate gpd (m3/d)	Nominal Salt Rejection (%)		Part Number	Description	Applied Pressure psi (bar)	Permeate Flow Rate gpd (m3/d)	Nominal Salt Rejection (%)
200386	HF4 – 2514	100 (6.89)	225 (0.85)	99.0		200389	HF4 – 4014	100 (6.89)	600 (2.27)	99.0
200387	HF4 – 2521	100 (6.89)	400 (1.51)	99.0		200390	HF4 – 4021	100 (6.89)	1000 (3.79)	99.0
200388	HF4 – 2540	100 (6.89)	850 (3.22)	99.0		200391	HF4 - 4040	100 (6.89)	2500 (9.46)	99.0

Test Parameters: 550 TDS Filtered (5 Micron), De-Chlorinated, Municipal Feed Water, 77 Degrees F, 15% Permeate Recovery, 6.5 - 7.0 pH Range, at the Specified Operating Pressure. Data Taken After 30 Minutes of Operation. Maximum Pressure drop for each element is 13 psi. Minimum salt rejection is 96%. Permeate flow for individual elements may vary +/- 20%.

	Dimensions inch (mm)									
Description	A	В	С	D		Description	Α	В	С	D
HF4 – 2514	14 (355.6)	1.1 (27.94)	0.75 (19.05)	2.4 (60.96)		HF4 - 4014	14 (355.6)	1.1 (27.94)	0.75 (19.05)	3.95 (100.3)
HF4 – 2521	21 (533.4)	1.1 (27.94)	0.75 (19.05)	2.4 (60.96)		HF4 - 4021	21 (533.4)	1.1 (27.94)	0.75 (19.05)	3.95 (100.3)
HF4 - 2540	40 (1016.0)	1.1 (27.94)	0.75 (19.05)	2.4 (60.96)		HF4 - 4040	40 (1016.0)	1.1 (27.94)	0.75 (19.05)	3.95 (100.3)

Under certain conditions, the presence of free chlorine and other oxidizing agents will cause premature membrane failure. Since oxidation damage is not covered under warranty, the manufacturer recommends removing residual free chlorine by pretreatment prior to membrane exposure. Wet tested membrane elements must be kept sealed and moist when in storage. Drying out may occur and damage the membrane permanently. Prevent elements from freezing or being exposed to direct sunlight. Wet tested elements are vacuum sealed in a polyethylene bag containing 1.0% sodium meta-bisulfite and then packaged in a cardboard box. Discard the permeate for the first twenty-four hours of operation. The permeate flow (product water flow) varies with feed water temperature. For membrane warranty information, please contact the manufacturer.

The manufacturer believes the information and data contained herein to be accurate and useful. The information and data are offered in good faith, but without guarantee, as conditions and methods of use of products are beyond the manufacturer's control. The manufacturer assumes no liability for results obtained or damages incurred through the application of the presented information and data. It is the user's responsibility to determine the appropriateness of these products for the user's specific end uses.

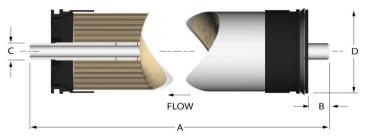
NF3-OPTIONAL

- Membrane Type:
- Maximum Operating Temperature:
- Maximum Operating Pressure:
- pH Range, Continuous Operation*:

* Maximum temperature for continuous operations above pH10 is 95° F (35°c)

- Maximum Feed Silt Density Index:
- Chlorine Tolerance: 0 ppm

5


	Product Specifications									
Part Number	Description	Applied Pressure psi (bar)	Permeate Flow Rate gpd (m3/d)	Nominal Salt Rejection (%)		Part Number	Description	Applied Pressure psi (bar)	Permeate Flow Rate gpd (m3/d)	Nominal Salt Rejection (%)
200401	NF3 – 2514	70 (4.83)	200 (0.76)	40 – 50		200404	NF3 – 4014	70 (4.83)	400 (1.51)	40 – 50
200402	NF3 – 2521	70 (4.83)	350 (1.33)	40 – 50		200405	NF3 – 4021	70 (4.83)	1000 (3.79)	40 – 50
200403	NF3 – 2540	70 (4.83)	850 (3.22)	40 – 50		200406	NF3 – 4040	70 (4.83)	2500 (9.46)	40 – 50

113°F (45°C)

2 - 11

600 psi (41 bar)

Test Parameters: 550 TDS Filtered (5 Micron), De-Chlorinated, Municipal Feed Water, 77 Degrees F, 15% Permeate Recovery, 6.5 - 7.0 pH Range, at the Specified Operating Pressure. Data Taken After 30 Minutes of Operation. Maximum Pressure drop for each element is 13 psi. Minimum salt rejection is 96%. Permeate flow for individual elements may vary +/- 20%.

	Dimensions inch (mm)									
Description	Α	В	С	D		Description	Α	В	С	D
NF3 - 2514	14 (355.6)	1.1 (27.94)	0.75 (19.05)	2.4 (60.96)		NF3 - 4014	14 (355.6)	1.1 (27.94)	0.75 (19.05)	3.95 (100.3)
NF3 - 2521	21 (533.4)	1.1 (27.94)	0.75 (19.05)	2.4 (60.96)	1	NF3 - 4021	21 (533.4)	1.1 (27.94)	0.75 (19.05)	3.95 (100.3)
NF3 - 2540	40 (1016.0)	1.1 (27.94)	0.75 (19.05)	2.4 (60.96)	1	NF3 - 4040	40 (1016.0)	1.1 (27.94)	0.75 (19.05)	3.95 (100.3)

Under certain conditions, the presence of free chlorine and other oxidizing agents will cause premature membrane failure. Since oxidation damage is not covered under warranty, the manufacturer recommends removing residual free chlorine by pretreatment prior to membrane exposure. Wet tested membrane elements must be kept sealed and moist when in storage. Drying out may occur and damage the membrane permanently. Prevent elements from freezing or being exposed to direct sunlight. Wet tested elements are vacuum sealed in a polyethylene bag containing 1.0% sodium meta-bisulfite and then packaged in a cardboard box. Discard the permeate for the first twenty-four hours of operation. The permeate flow (product water flow) varies with feed water temperature. For membrane warranty information, please contact the manufacturer.

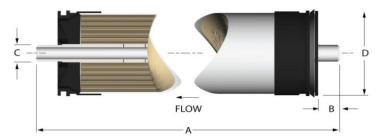
The manufacturer believes the information and data contained herein to be accurate and useful. The information and data are offered in good faith, but without guarantee, as conditions and methods of use of products are beyond the manufacturer's control. The manufacturer assumes no liability for results obtained or damages incurred through the application of the presented information and data. It is the user's responsibility to determine the appropriateness of these products for the user's specific end uses.

NF4-OPTIONAL

- Membrane Type:
- Maximum Operating Temperature:
- Maximum Operating Pressure:
- pH Range, Continuous Operation*:

* Maximum temperature for continuous operations above pH10 is 95° F (35°c)

Polyamide	Thin-Film	Composite	
-----------	-----------	-----------	--

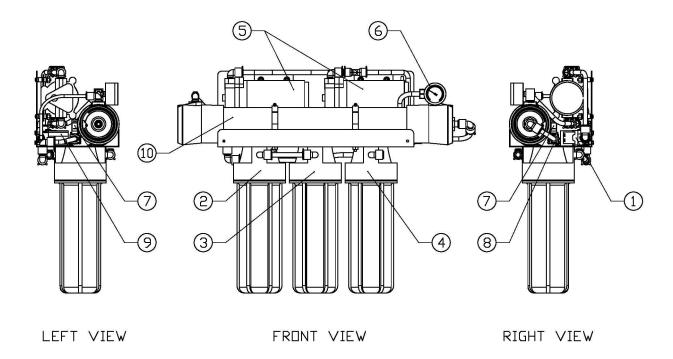

113°F (45°C)

2 - 11

- 600 psi (41 bar)
- pH Range, Short Term Cleaning (30 Min.): 1 12
 Maximum Feed Silt Density Index: 5
- Chlorine Tolerance:
 0 ppm

				Product S	pec	ifications				
Part Number	Description	Applied Pressure psi (bar)	Permeate Flow Rate gpd (m3/d)	Nominal Salt Rejection (%)		Part Number	Description	Applied Pressure psi (bar)	Permeate Flow Rate gpd (m3/d)	Nominal Salt Rejection (%)
200407	NF4 – 2514	70 (4.83)	200 (0.76)	80 – 90		200410	NF4 – 4014	70 (4.83)	400 (1.51)	80 – 90
200408	NF4 – 2521	70 (4.83)	250 (0.95)	80 – 90		200411	NF4 – 4021	70 (4.83)	950 (3.60)	80 – 90
200409	NF4 – 2540	70 (4.83)	680 (2.57)	80 – 90		200412	NF4 – 4040	70 (4.83)	2000 (7.6)	80 – 90

Test Parameters: 550 TDS Filtered (5 Micron), De-Chlorinated, Municipal Feed Water, 77 Degrees F, 15% Permeate Recovery, 6.5 - 7.0 pH Range, at the Specified Operating Pressure. Data Taken After 30 Minutes of Operation. Maximum Pressure drop for each element is 13 psi. Minimum salt rejection is 96%. Permeate flow for individual elements may vary +/- 20%.



	Dimensions inch (mm)									
Description	A	В	С	D		Description	Α	В	С	D
NF4 - 2514	14 (355.6)	1.1 (27.94)	0.75 (19.05)	2.4 (60.96)		NF4 - 4014	14 (355.6)	1.1 (27.94)	0.75 (19.05)	3.95 (100.3)
NF4 - 2521	21 (533.4)	1.1 (27.94)	0.75 (19.05)	2.4 (60.96)		NF4 - 4021	21 (533.4)	1.1 (27.94)	0.75 (19.05)	3.95 (100.3)
NF4 - 2540	40 (1016.0)	1.1 (27.94)	0.75 (19.05)	2.4 (60.96)	[NF4 - 4040	40 (1016.0)	1.1 (27.94)	0.75 (19.05)	3.95 (100.3)

Under certain conditions, the presence of free chlorine and other oxidizing agents will cause premature membrane failure. Since oxidation damage is not covered under warranty, the manufacturer recommends removing residual free chlorine by pretreatment prior to membrane exposure. Wet tested membrane elements must be kept sealed and moist when in storage. Drying out may occur and damage the membrane permanently. Prevent elements from freezing or being exposed to direct sunlight. Wet tested elements are vacuum sealed in a polyethylene bag containing 1.0% sodium meta-bisulfite and then packaged in a cardboard box. Discard the permeate for the first twenty-four hours of operation. The permeate flow (product water flow) varies with feed water temperature. For membrane warranty information, please contact the manufacturer.

The manufacturer believes the information and data contained herein to be accurate and useful. The information and data are offered in good faith, but without guarantee, as conditions and methods of use of products are beyond the manufacturer's control. The manufacturer assumes no liability for results obtained or damages incurred through the application of the presented information and data. It is the user's responsibility to determine the appropriateness of these products for the user's specific end uses.

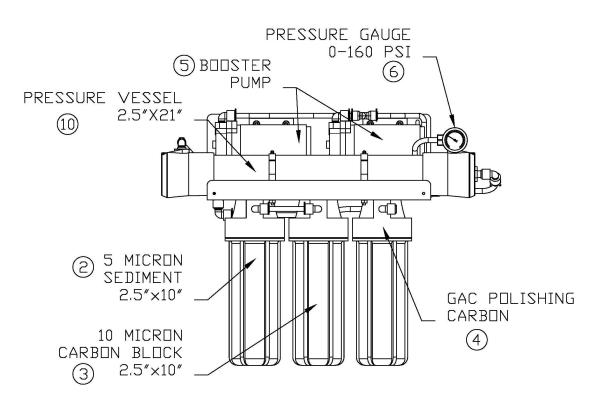
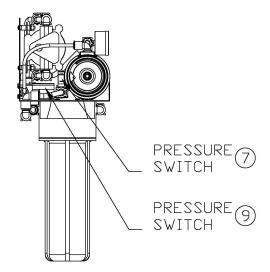
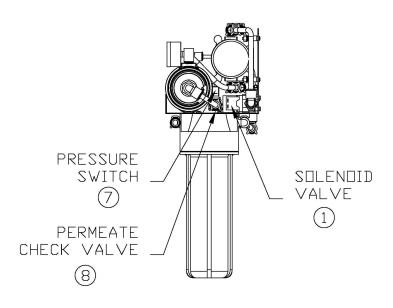

LT-200, LT-300 SYSTEM IDENTIFICATION

FIGURE 1A


NUMBER IDENTIFICATION

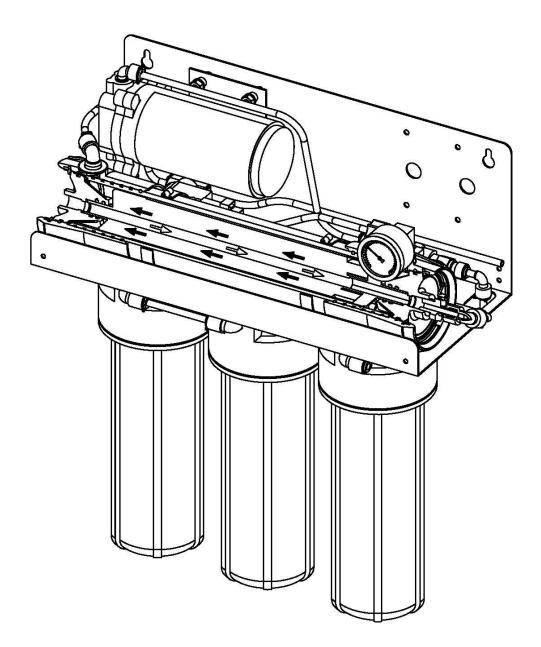
- 1. Solenoid Valve Turns On/Off Feed Water
- 2. 5 Micron Sediment Removes particulates
- 3. 10 Micron Carbon Block Removes chlorine
- 4. GAC Polishing- Removes chlorine, odor and taste
- 5. RO Pump Pressurizes RO System
- 6. Pressure Gauge Measures pump discharge pressure
- 7. Pressure Switch Turns the pump off at 40 PSI feed pressure
- 8. Permeate Check Valve Protects membranes from back pressure
- 9. Flow Restrictor Restricts flow on the concentrate line
- 10. Pressure Vessel Houses Membrane Elements

FRONT VIEW


FIGURE 1B

LEFT VIEW

FIGURE 1C


LT – Series User's Manual MKTF-210

RIGHT VIEW

FIGURE 1D

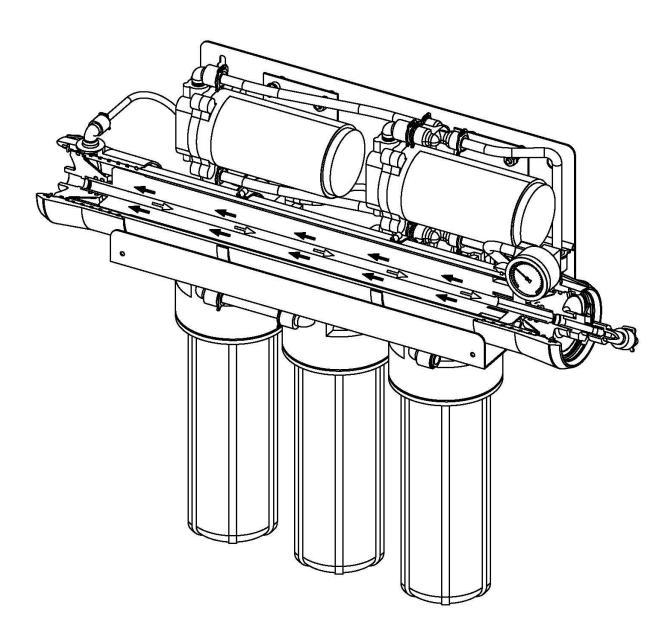

LT-200 MEMBRANE FLOW DIAGRAM

FIGURE 1E

Note: Black arrows represent concentrate water and white arrows represent permeate water.

LT-300 MEMBRANE FLOW DIAGRAM

FIGURE 1F

Note: Black arrows represent concentrate water and white arrows represent permeate water.

DESIGN BASIS FOR LT-200, LT 300

Specifications

Models	LT-200	LT-300		
Design		,		
Configuration	Single Pass	Single Pass		
Feed Water Source***	TDS <1000 ppm	TDS <1000 ppm		
Standard Recovery Rate†	47%	40%		
Rejection and Flow Rates				
Nominal Salt Rejection %	98.5	98.5		
Permeate Flow* gpm (lpm)	0.14 (0.53)	0.21 (0.79)		
Minimum Feed Flow gpm (lpm)	0.50 (1.89)	0.50 (1.89)		
Maximum Feed Flow gpm (lpm)	1.00 (3.79)	1.00 (3.79)		
Minimum Concentrate Flow gpm (lpm)	0.30 (1.14)	0.30 (1.14)		
Connections		·		
Feed inch	1/4 Tube	3/8 Tube		
Permeate inch	1/4 Tube	3/8 Tube		
Concentrate inch	1/4 Tube	1/4 Tube		
Membranes				
Membrane(s) Per Vessel	1	1		
Membrane Quantity	1	1		
Membrane Size	2514	2521		
Vessels				
Vessel Array	1	1		
Vessel Quantity	1	1		
Pumps				
Ритр Туре	Booster Pump 8800	Booster Pump 8800		
Motor HP (kw)	N/A	N/A		
Electrical				
Standard Voltage	110V, 60Hz, 1 PH, 2.0A	110V, 60Hz, 1 PH, 4.0A		
Voltage Options	220V, 50Hz, 1 PH, 1.0A 220V, 60Hz, 1 PH, 1.0A	220V, 50Hz, 1 PH, 2.0A 220V, 60Hz, 1 PH, 2.0A		
Systems Dimensions **		·		
L x W x H inch (cm)	7 x 17 x 32 (18 x 43 x 81)	7 x 25 x 32 (18 x 64 x 81)		
Weight Ib. (kg)	42 (19.1)	50 (22.7)		

* Product Flow rates and recovery are based on equipment test parameters.

** Does not include operating space requirements.

*** Treatment ability of the RO system is dependent on feed water quality. Performance projections must be run for each installation.

WARNING: NEVER EXCEED THE MAXIMUM PRESSURE RATING OF YOUR SYSTEM.

OPERATING DO's AND DON'Ts

DO:

- Change the cartridge filters regularly
- Monitor the system and keep a daily log
- Run the system as much as possible on a continuous basis.
- Always feed the pump with filtered water.

DON'T

- Permit chlorine to enter or be present in the feed water.
- Shut down the system for extended periods.
- Operate the system with insufficient feed flow.
- Operate the pump dry.

MAINTENANCE PROCEDURES

1. Periodically observe the quality and quantity of product water from the system.

A NOTE: CHECK THE FEED WATER PRESSURE GOING INTO THE REVERSE OSMOSIS MEMBRANE, A SIGNIFICANT DROP IN PRESSURE COULD INDICATE A FOULED PRE-FILTER.

- 2. A 20% increase in TDS when checking the permeate water indicates possible membrane damage, and the membrane may need to be replaced.
- 3. It is suggested that a hand held TDS digital meter is used once per week to monitor the water quality.

NOTE: IF THE TDS OF THE FEED WATER EXCEEDS 1000 PPM OF NACL, A LARGER FLOW RESTRICTOR SHOULD BE USED TO EXTEND THE MEMBRANE LIFE.

- 4. It is important to maintain and/or replace the carbon block regularly since the Thin Film Composite membranes are chlorine sensitive. Irreversible damage will occur with any chlorine present in the feed water. For additional information, please review the manufacturer's membrane specification sheets.
- 5. The product line has a one way check valve installed. The check valve should be checked regularly and replaced if it is not properly sealing.
- 6. Keep the feed water temperature above 4 °C (36 °F).

WATER OUTPUT AND INCREASE PUMP PRESSURE.

MEMBRANE REMOVAL AND REPLACEMENT

Replacing membranes in the pressure vessels is an easy process if you have the proper information and tools at hand. Please refer to the following instructions when removing and replacing membrane elements:

WARNING: ALL PRESSURE GAUGES MUST READ ZERO BEFORE PROCEEDING. BEFORE ATTEMPTING, DISCONNECT THE POWER FROM THE SYSTEM AND BLEED ALL WATER PRESSURE FROM THE SYSTEM.

- 1. Remove the end caps from the top of the membrane housings. This is done by removing the white snap ring of the membrane housing.
- 2. Remove the membrane bag containing the membrane element from the shipping box.

WEAR GLOVES FOR THE FOLLOWING STEPS IN ORDER NOT TO CONTAMINATE THE MEMBRANE.

- 3. Cut the bag open as close as possible to the seal at the end of the bag, so the bag may be re-used if necessary.
- 4. Make sure that all parts are clean and free from dirt. Examine the brine seal and permeate tube for nicks or cuts. Replace the O-rings or brine seal if damaged.
- 5. Flow directions should be observed for installation of each element into each housing.

As time progresses, the efficiency of the membrane will be reduced. In general, the salt rejection does not change significantly until two or three years after installation when operated on properly pretreated feed water. The permeate flow rate will begin to decline slightly after one year of operation, but can be extended with diligent flushing and cleaning of the system. A high pH and/or precipitation of hardness can cause premature loss in rejection.

REPLACING THE MEMBRANE ELEMENT:

WARNING: THE BRINE SEAL MUST BE IN THE SAME POSITION FOR EACH MEMBRANE ELEMENT HOUSING, SO MARK EACH HOUSING PRIOR TO REMOVING THE MEMBRANE ELEMENTS. THE BRINE SEAL IS A RUBBER SEAL

THAT PROTRUDES ON ONE SIDE OF THE MEMBRANE AND IS ALWAYS ON THE FEED SIDE OF THE MEMBRANE ELEMENT.

- 1. Remove one membrane element at a time from the membrane element housings, from the top of the housing. Long nose pliers may be necessary to pull the old membrane element out of the membrane element housing.
- 2. Lubricate the brine seal with non petroleum based lubricant, Silicone DC 111.
- 3. Install the brine seal side of the membrane element first. When the housings have a direction of flow from bottom to top, the brine seal should be located at the bottom of the housing.
- 4. At a slight angle, insert the membrane while slightly rotating the element being careful not to tear or flip the brine seal. A slow twisting motion should be used to insert the membrane element, to ensure the brine seal stays in place. Re-lube the brine seal if necessary.
- 5. With a smooth and constant motion, push the membrane element into the housing so the brine seal enters the housing without coming out of the brine seal groove.
- 6. Re-install the end caps by gently twisting the end cap while pushing it onto the housing. Ensure that you do not pinch or fatigue any O-rings while re-installing the end plug. Push the end plug on until the outer diameter of the plug is flush with the outer diameter of the membrane housing.
- 7. Insert the snap ring until it is fully seated. Install the locking clip if available.
- 8. Reconnect any fittings that may have been disconnected when the membrane element housings were disassembled.
- 9. To start-up the system, please refer to the Start-Up section of this manual. (See Page 6)

CAUTION: WET MEMBRANES ARE SHIPPED IN A PRESERVATIVE SOLUTION. THE MEMBRANES MUST BE FLUSHED FOR AT LEAST 1 HOUR TO REMOVE THE PRESERVATIVE FROM THE MEMBRANE. DISCARD ALL OF THE PERMEATE AND CONCENTRATE, WHICH IS PRODUCED DURING THE FLUSH PERIOD.

PREPARING UNIT FOR STORAGE OR SHIPMENT

Prior to shipping or storing your system, the system should be cleaned with an appropriate cleaner, flushed with water and protected from biological attack with an appropriate solution for membrane elements. The membrane housing(s) and plumbing lines of the system must be completely drained. Any water remaining in the plumbing of a system may freeze, causing serious damage.

Preparing system for storage:

- 1. Totally immerse the elements in the membrane housing in a solution of 2 % Memstor, venting the air outside of the pressure vessels. Use the overflow technique: circulate the Memstor solution in such a way that the remaining air in the system is minimized after the recirculation is completed. After the pressure vessel is filled, the Memstor solution should be allowed to overflow through an opening located higher than the upper end of the highest pressure vessel being filled.
- 2. Separate the preservation solution from the air outside. Any contact with oxygen will oxidize the Memstor.
- 3. Check the pH once a week. When the pH becomes 3 or lower, change the preservation solution.
- 4. Repeat this process at least once a month.

During the shutdown period, the plant must be kept frost-free, or the temperature must not exceed 113 \degree (45 \degree).

Preparing unit for shipment:

- 5. Disconnect the inlet, concentrate, pre-filter, and permeate plumbing.
- 6. Drain all water from the pre-filter cartridge housings by unscrewing the housings, removing the pre-filter cartridges, and drain the water from the housings.
- 7. Disconnect the tubing from the connectors on the permeate and concentrate inlets and outlets.
- 8. Allow the system to drain for a minimum of eight hours or until the opened ports quit dripping.
- 9. After draining is complete, reconnect all of the plumbing.

REVERSE OSMOSIS TROUBLESHOOTING

SYMPTOMS	POSSIBLE CAUSES	CORRECTIVE ACTION	
	Low supply pressure	Increase inlet pressure	
	Cartridge filters plugged	Change filters	
	Solenoid valve malfunction	Replace sol. valve and/or coil	
Low Inlet Pressure	Motor may not be drawing correct current	Use clamp-on amp meter to check the motor amp draw.	
	Concentrate valve might be damaged	Replace needle valve	
	Leaks	Fix any visible leaks	
	Low inlet flow	Adjust concentrate valve	
	Cold feed water	See temperature correction sheet	
Low Permeate Flow	Low operating pressure	See low inlet pressure	
	Defective membrane brine seal	Inspect and/or replace brine seal	
	Fouled or scaled membrane	Clean membranes	
	Damaged product tube o-rings	Inspect and/or replace	
High permeate flow	Damaged or oxidized membrane	Replace membrane	
	Exceeding maximum feed water temperature	See temperature correction sheet	
	Low operating pressure	See low inlet pressure	
Poor permeate quality	Damage product tube o-rings	Inspect and/or replace	
	Damaged or oxidized membrane	Replace membrane	
	Metal Oxide Fouling	Improve pretreatment to remove metals. Clean with acid cleaners.	
	Colloidal Fouling	Optimize pretreatment for colloid removal. Clean with high pH anionic cleaners.	
Membrane fouling	Scaling (CaSO4, CaSO3, BaSO4, SiO2)	Increase acid addition and antiscalant dosage for CaVO3 and CaCO4. Reduce recovery. Clean with acid cleaners	
	Biological Fouling	Shock dosage of Sodium Bi-Sulfate. Continuous feed of Sodium Bi- Sulfate at reduced pH. Chlorination and de-chlorination. Replace cartridge filters.	
	Organic Fouling	Activated Carbon or other pretreatment. Clean with high pH cleaner.	
	Chlorine Oxidation	Check Chlorine feed equipment and de-chlorination system.	
	Abrasion of membrane by Crystalline Material	Improve pretreatment. Check all filters for media leakage.	

ABNORMAL PERMEATE FLOW

Permeate flow should be within 20% of the rated production, after correcting the feed water temperatures above or below 77 °F. Check your permeate flow meter to determine the permeate flow rate.

NOTE: TO DETERMINE THE TEMPERATURE CORRECTION FACTOR, LOCATE THE TEMPERATURE CORRECTION TABLE IN THIS USER'S MANUAL AND FOLLOW THE DIRECTIONS

TEMPERATURE CORRECTION FACTORS FOR MEMBRANE

Find the temperature correction factor (TCF) from the table below. Divide the rated permeate flow at 77 °F by the temperature correction factor. The result is the permeate flow at the desired temperature. (See example on the next page)

Temperature °F (°C)	Temperature Correction Factor								
50.0 (10.0)	1.711	57.2 (14.0)	1.475	64.4 (18.0)	1.276	71.6 (22.0)	1.109	78.8 (26.0)	0.971
50.2 (10.1)	1.705	57.4 (14.1)	1.469	64.6 (18.1)	1.272	71.8 (22.1)	1.105	79.0 (26.1)	0.968
50.4 (10.2)	1.698	57.6 (14.2)	1.464	64.8 (18.2)	1.267	72.0 (22.2)	1.101	79.2 (26.2)	0.965
50.5 (10.3)	1.692	57.7 (14.3)	1.459	64.9 (18.3)	1.262	72.1 (22.3)	1.097	79.3 (26.3)	0.962
50.7 (10.4)	1.686	57.9 (14.4)	1.453	65.1 (18.4)	1.258	72.3 (22.4)	1.093	79.5 (26.4)	0.959
50.9 (10.5)	1.679	58.1 (14.5)	1.448	65.3 (18.5)	1.254	72.5 (22.5)	1.090	79.7 (26.5)	0.957
51.1 (10.6)	1.673	58.3 (14.6)	1.443	65.5 (18.6)	1.249	72.7 (22.6)	1.086	79.9 (26.6)	0.954
51.3 (10.7)	1.667	58.5 (14.7)	1.437	65.7 (18.7)	1.245	72.9 (22.7)	1.082	80.1 (26.7)	0.951
51.4 (10.8)	1.660	58.6 (14.8)	1.432	65.8 (18.8)	1.240	73.0 (22.8)	1.078	80.2 (26.8)	0.948
51.6 (10.9)	1.654	58.8 (14.9)	1.427	66.0 (18.9)	1.236	73.2 (22.9)	1.075	80.4 (26.9)	0.945
51.8 (11.0)	1.648	59.0 (15.0)	1.422	66.2 (19.0)	1.232	73.4 (23.0)	1.071	80.6 (27.0)	0.943
52.0 (11.1)	1.642	59.2 (15.1)	1.417	66.4 (19.1)	1.227	73.6 (23.1)	1.067	80.8 (27.1)	0.940
52.2 (11.2)	1.636	59.4 (15.2)	1.411	66.6 (19.2)	1.223	73.8 (23.2)	1.064	81.0 (27.2)	0.937
52.3 (11.3)	1.630	59.5 (15.3)	1.406	66.7 (19.3)	1.219	73.9 (23.3)	1.060	81.1 (27.3)	0.934
52.5 (11.4)	1.624	59.7 (15.4)	1.401	66.9 (19.4)	1.214	74.1 (23.4)	1.056	81.3 (27.4)	0.932
52.7 (11.5)	1.618	59.9 (15.5)	1.396	67.1 (19.5)	1.210	74.3 (23.5)	1.053	81.5 (27.5)	0.929
52.9 (11.6)	1.611	60.1 (15.6)	1.391	67.3 (19.6)	1.206	74.5 (23.6)	1.049	81.7 (27.6)	0.926
53.1 (11.7)	1.605	60.3 (15.7)	1.386	67.5 (19.7)	1.201	74.7 (23.7)	1.045	81.9 (27.7)	0.924
53.2 (11.8)	1.600	60.4 (15.8)	1.381	67.6 (19.8)	1.197	74.8 (23.8)	1.042	82.0 (27.8)	0.921
53.4 (11.9)	1.594	60.6 (15.9)	1.376	67.8 (19.9)	1.193	75.0 (23.9)	1.038	82.2 (27.9)	0.918
53.6 (12.0)	1.588	60.8 (16.0)	1.371	68.0 (20.0)	1.189	75.2 (24.0)	1.035	82.4 (28.0)	0.915
53.8 (12.1)	1.582	61.0 (16.1)	1.366	68.2 (20.1)	1.185	75.4 (24.1)	1.031	82.6 (28.1)	0.913
54.0 (12.2)	1.576	61.2 (16.2)	1.361	68.4 (20.2)	1.180	75.6 (24.2)	1.028	82.8 (28.2)	0.910
54.1 (12.3)	1.570	61.3 (16.3)	1.356	68.5 (20.3)	1.176	75.7 (24.3)	1.024	82.9 (28.3)	0.908
54.3 (12.4)	1.564	61.5 (16.4)	1.351	68.7 (20.4)	1.172	75.9 (24.4)	1.021	83.1 (28.4)	0.905
54.5 (12.5)	1.558	61.7 (16.5)	1.347	68.9 (20.5)	1.168	76.1 (24.5)	1.017	83.3 (28.5)	0.902
54.7 (12.6)	1.553	61.9 (16.6)	1.342	69.1 (20.6)	1.164	76.3 (24.6)	1.014	83.5 (28.6)	0.900
54.9 (12.7)	1.547	62.1 (16.7)	1.337	69.3 (20.7)	1.160	76.5 (24.7)	1.010	83.7 (28.7)	0.897
55.0 (12.8)	1.541	62.2 (16.8)	1.332	69.4 (20.8)	1.156	76.6 (24.8)	1.007	83.8 (28.8)	0.894
55.2 (12.9)	1.536	62.4 (16.9)	1.327	69.6 (20.9)	1.152	76.8 (24.9)	1.003	84.0 (28.9)	0.892
55.4 (13.0)	1.530	62.6 (17.0)	1.323	69.8 (21.0)	1.148	77.0 (25.0)	1.000	84.2 (29.0)	0.889
55.6 (13.1)	1.524	62.8 (17.1)	1.318	70.0 (21.1)	1.144	77.2 (25.1)	0.997	84.4 (29.1)	0.887
55.8 (13.2)	1.519	63.0 (17.2)	1.313	70.2 (21.2)	1.140	77.4 (25.2)	0.994	84.6 (29.2)	0.884
55.9 (13.3)	1.513	63.1 (17.3)	1.308	70.3 (21.3)	1.136	77.5 (25.3)	0.991	84.7 (29.3)	0.882
56.1 (13.4)	1.508	63.3 (17.4)	1.304	70.5 (21.4)	1.132	77.7 (25.4)	0.988	84.9 (29.4)	0.879
56.3 (13.5)	1.502	63.5 (17.5)	1.299	70.7 (21.5)	1.128	77.9 (25.5)	0.985	85.1 (29.5)	0.877
56.5 (13.6)	1.496	63.7 (17.6)	1.294	70.9 (21.6)	1.124	78.1 (25.6)	0.982	85.3 (29.6)	0.874
56.7 (13.7)	1.491	63.9 (17.7)	1.290	71.1 (21.7)	1.120	78.3 (25.7)	0.979	85.5 (29.7)	0.871
56.8 (13.8)	1.486	64.0 (17.8)	1.285	71.2 (21.8)	1.116	78.4 (25.8)	0.977	85.6 (29.8)	0.869
57.0 (13.9)	1.480	64.2 (17.9)	1.281	71.4 (21.9)	1.112	78.6 (25.9)	0.974	85.8 (29.9)	0.866

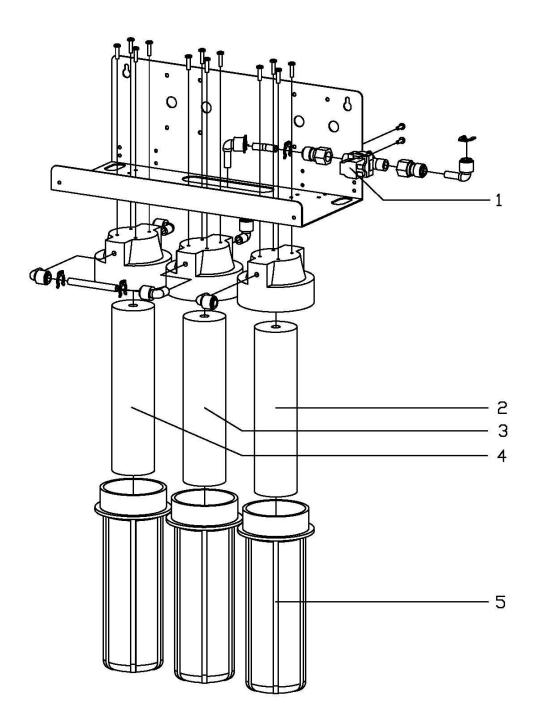
°F = (°C x 9/5) + 32

Corrected Flow Rate - (Measured Flow Rate)*(TCF @ Feed Water Temp.)

If a system is rated to produce 5 gpm of permeate water @ 77° F, the same system will produce more water at a higher temperature. It will also produce less water at a lower temperature. Use the temperature correction table to obtain the correct flow.

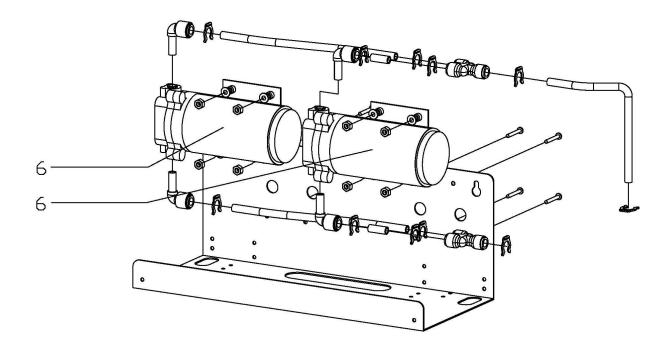
Example:

5 gpm @ 59° F (5÷1.42=3.52 gpm) 5 gpm @ 77° F (5÷1=5 gpm) 5 gpm @ 84° F (5÷0.89=5.62 gpm)


SERVICE ASSISTANCE

If service assistance is required, please complete the following process: Contact your local dealer or distributor. Prior to making the call, have the following information available: system installation date, serial number, daily log sheets, current operating parameters (e.g. flow, operating pressures, pH, etc.) and a detailed description of the problem.

OPERATION


Company:	Date of Start- Up: Date of Last Cleaning:			
Location:				
Week Of:				
System Serial #:	-			
Date				
Time				
Hour of Operation				
Filter inlet pressure (psi)				
Filter outlet Pressure (psi)				
Concentrate Pressure (psi)				
Pump Discharge Pressure (psi)				
Feed Flow (gpm)				
Permeate Flow (gpm)				
Concentrate Flow (gpm)				
Recovery %				
Feed Temperature				
Feed TDS (ppm)				
Permeate TDS (ppm)				
Rejection %				
Feed PH				
Permeate PH				
Scale Inhibitor Feed (ppm)				
Iron (mg/L)				
Free Chlorine (mg/L)				
Hardness (gpg CaCO3)				

DRAWINGS

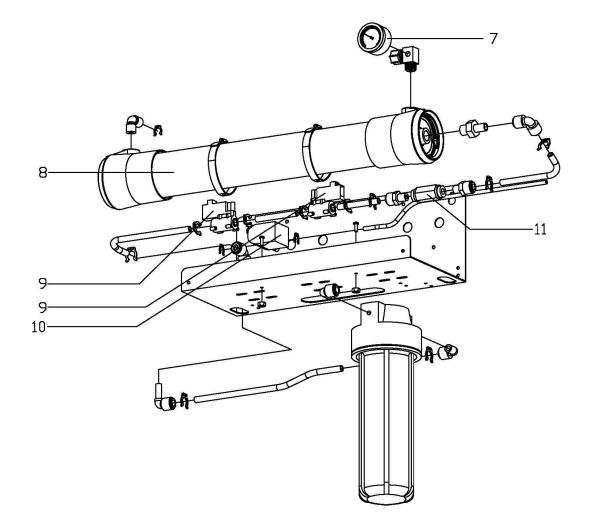
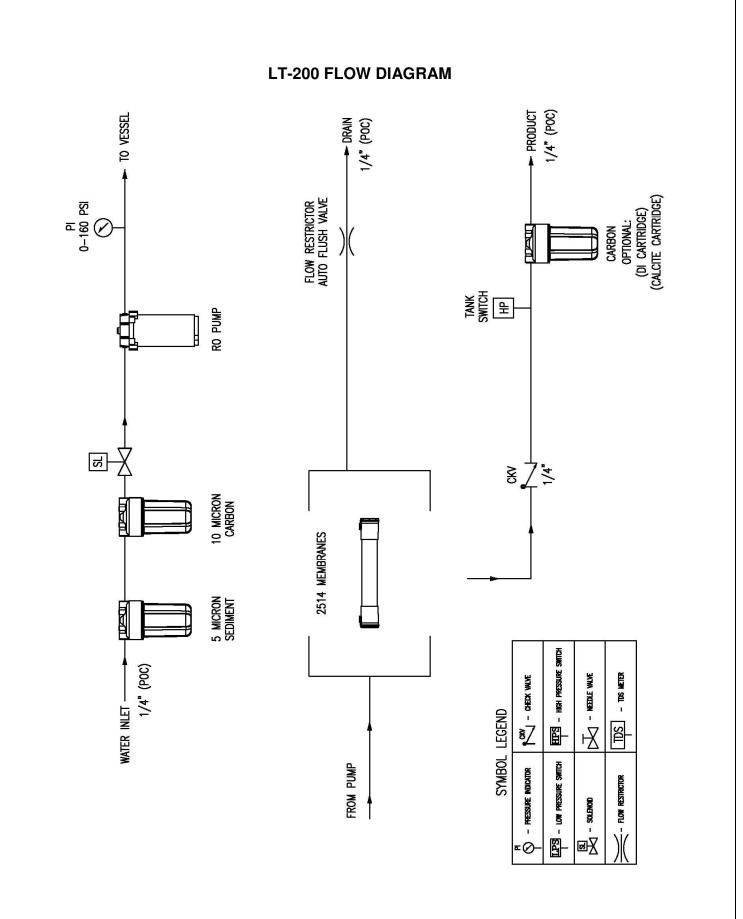


FIGURE 2

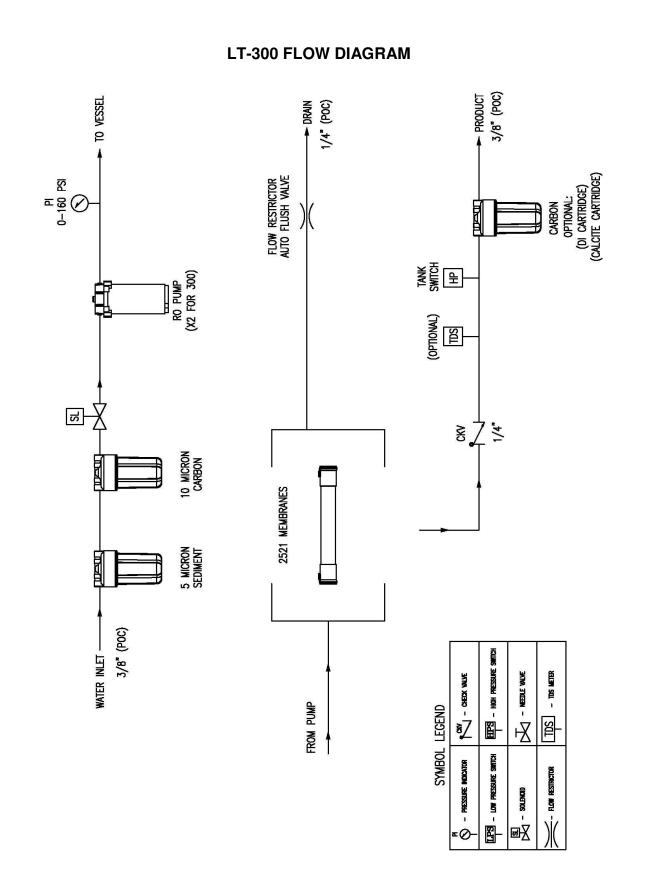
LT – Series User's Manual MKTF-210 28

FIGURE 3

FIGURE 4


LT-200 SYSTEM PART LIST

Item No.	Qty.	Part No.	Description
11.	20	0773VA	LVE, SOLENOID, 3/8" BSP, 24V
21.	20	0621CA	RT, SEDIMENT, POLYPRO, 2.5"x 10", 5MIC
31.	20	0658CA	RT, CARBON, BLOCK, 2.5"x 10", 10MIC
41.	20	0668CA	RTRIDGE, CARBON, GAC, 2.5"x 10"
53.	20	0719HC	OUS, FILT, WHT/WHT, 2.5"x 10", DBL O-RING
61.	20	0768PU	IMP, BOOSTER, 8800, 3/8" QC, AQUATEC
71.	20)2436GA	UGE, BKM, NO FILL, 0-160PSI/BAR, 1.5" DIA
81.	20)2581MF	IS, PVC, 2514, 3/8"x 3/8" SP FNPT, SYSTEMS
92.	20	0762SW	/ITCH, TANK, PRESSURE, 20-40PSI, 1/4" QC
101.	20)0772RE	EST, FIXED, 800ML/MIN, AUTO FLUSH, 1/4" QC
111.	20	0963VA	LVE, CHECK, PP, 1/4" FNPT x 1/4" FNPT
121.	20	00386ME	EM, HF4, 2514, SYSTEMS


LT-300 SYSTEM PART LIST

Item No.	Qty.	Part No.	Description
11.	20	0773VA	LVE, SOLENOID, 3/8" BSP, 24V
21.	20	0621CA	RT, SEDIMENT, POLYPRO, 2.5"x 10", 5MIC
31.	20	0658CA	RT, CARBON, BLOCK, 2.5"x 10", 10MIC
41.	20	0668CA	RTRIDGE, CARBON, GAC, 2.5"x 10"
53.	20	0719HC	OUS, FILT, WHT/WHT, 2.5"x 10", DBL O-RING
62.	20	0768PU	MP, BOOSTER, 8800, 3/8" QC, AQUATEC
71.	20	2436GA	UGE, BKM, NO FILL, 0-160PSI/BAR, 1.5" DIA
81.	20	02519M⊦	IS, PVC, 2521, 3/8"x 3/8" SP FNPT, SYSTEMS
92.	20	0771SW	/ITCH, TANK, PRESSURE, 20-40PSI, 3/8" QC
101.	20	0772RE	ST, FIXED, 800ML/MIN, AUTO FLUSH, 1/4" QC
111.	20)0963VA	LVE, CHECK, PP, 1/4" FNPT x 1/4" FNPT
121.	20	0387ME	EM, HF4, 2521, SYSTEMS

32

LT – Series User's Manual MKTF-210

06/12